烟梗热解焦油类产物析出特性实验研究

黄正光, 龚德鸿, 徐圆圆, 杨浪

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 1-9.

PDF(2381 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2381 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 1-9. DOI: 10.19912/j.0254-0096.tynxb.2023-0209

烟梗热解焦油类产物析出特性实验研究

  • 黄正光, 龚德鸿, 徐圆圆, 杨浪
作者信息 +

EXPERIMENTAL STUDY ON PRECIPITATION CHARACTERISTICS OF TAR PRODUCTS FROM TOBACCO STEM PYROLYSIS

  • Huang Zhengguang, Gong Dehong, Xu Yuanyuan, Yang Lang
Author information +
文章历史 +

摘要

利用热重-质谱联用技术对烟梗热解特性进行研究,在氮气气氛下分析升温速率和粒径对烟梗热解焦油类产物的析出特性影响。结果表明:烟梗热解析出焦油类产物主要有苯、甲苯、苯胺、苯酚、糠醛,升温速率为20 K/min的80目烟梗颗粒热解焦油类产物相对累积量分别为240.55×10-12、184.29×10-12、93.71×10-12、147.50×10-12、154.64×10-12 A/mg。其中苯和甲苯主要在木质素热解阶段析出,糠醛主要在半纤维素和纤维素热解阶段析出,苯酚在两个阶段均有较大析出。烟梗热解焦油类产物析出强度随升温速率的增大而增强,粒径为80目的烟梗颗粒热解析出焦油产量最大,150目最小。

Abstract

Thermogravimetric mass spectrometry was used to investigate the pyrolysis features of tobacco stem. The effects of temperature rise rate and particle size on the tar product precipitation characteristics were analyzed in a nitrogen atmosphere. The results illustrate that the primary tar products during the pyrolysis of tobacco stem are benzene, toluene, aniline, phenol, and furfural. When 80 mesh tobacco stem particles were heated at a rate of 20 K/min, the relative accumulative amounts of tar products are 240.55×10-12, 184.29×10-12, 93.71×10-12, 147.50×10-12, and 154.64×10-12 A/mg, respectively. Benzene and toluene are mostly precipitated in the pyrolysis stage of lignin, furfural is mainly released product in the pyrolysis stage of hemicellulose and cellulose, while phenol is precipitated throughout both stages. The intensity of tar products from tobacco stem pyrolysis increases with the rise of heating rate. The output of tar from tobacco stem pyrolysis with 80 mesh size is the highest, and the output amount of tar from tobacco stem pyrolysis with 150 mesh size is the lowest.

关键词

生物质 / 热解 / 焦油 / 升温速率 / 粒径 / 热重质谱联用

Key words

biomass / pyrolysis / tar / heating rate / particle size / TG-MS

引用本文

导出引用
黄正光, 龚德鸿, 徐圆圆, 杨浪. 烟梗热解焦油类产物析出特性实验研究[J]. 太阳能学报. 2024, 45(6): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0209
Huang Zhengguang, Gong Dehong, Xu Yuanyuan, Yang Lang. EXPERIMENTAL STUDY ON PRECIPITATION CHARACTERISTICS OF TAR PRODUCTS FROM TOBACCO STEM PYROLYSIS[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0209
中图分类号: TK6   

参考文献

[1] 唐云霓, 闫如雪, 周艳玲. 碳中和愿景下能源政策的结构表征与优化路径[J]. 清华大学学报(自然科学版), 2023, 63(1): 1-14.
TANG Y N, YAN R X, ZHOU Y L.Structural representation and optimization path of energy policy under the carbon neutral vision[J]. Journal of Tsinghua University(science and technology), 2023, 63(1): 1-14.
[2] 李风雷, 尹璐, 赵吉, 等. 以能源转型推进“碳中和”的北欧经验借鉴与中国方案初探[J]. 可再生能源, 2021, 39(10): 1308-1313.
LI F L, YIN L, ZHAO J, et al.The Nordic experiences and China's choices for improving “Carbon Neutrality” by energy transition[J]. Renewable energy resources, 2021, 39(10): 1308-1313.
[3] WANG Y, GUO C H, CHEN X J, et al.Carbon peak and carbon neutrality in China: goals, implementation path and prospects[J]. China geology, 2021, 4(4): 720-746.
[4] 张和平. 双碳背景下新能源技术发展现状及展望[J]. 现代化工, 2022, 42(8): 7-9.
ZHANG H P.Prospect of new energy technology under “carbon peak and carbon neutralization”[J]. Modern chemical industry, 2022, 42(8): 7-9.
[5] 陈涛, 谢诞梅, 岳亚楠, 等. 生物质流化床热解焦油演化的CFD-DEM数值模拟研究[J]. 力学与实践, 2022, 44(4): 827-833.
CHEN T, XIE D M, YUE Y N, et al.Modeling tar evolution during biomass pyrolysis in a fluidized bed reactor by using a CFD-DEM method[J]. Mechanics in engineering, 2022, 44(4): 827-833.
[6] 李学琴, 刘鹏, 吴幼青, 等. 生物质气化技术的发展现状及展望[J]. 林产化学与工业, 2022, 42(5): 113-121.
LI X Q, LIU P, WU Y Q, et al.Development status and prospect of biomass gasification technology[J]. Chemistry and industry of forest products, 2022, 42(5): 113-121.
[7] YI B J, CHEN M J, GAO Y, et al.Investigation on the co-combustion characteristics of multiple biomass and coal under O2/CO2 condition and the interaction between different biomass[J]. Journal of environmental management, 2023, 325: 116498.
[8] 赵文霞, 柴子茹, 边永欢, 等. 农林生物质锅炉烟气排放特性及其SNCR脱硝效果的数值模拟[J]. 环境工程学报, 2022, 16(10): 3355-3366.
ZHAO W X, CHAI Z R, BIAN Y H, et al.Flue gas emission characteristics and SNCR denitrification numerical simulation of agro-forestry biomass boiler[J]. Chinese journal of environmental engineering, 2022, 16(10): 3355-3366.
[9] 郎盼盼, 刘鹏, 李艳玲, 等. 不同木屑类生物质热解动力学与热力学参数研究[J]. 林产工业, 2022, 59(7): 30-37, 52.
LANG P P, LIU P, LI Y L, et al.Study on kinetics and thermodynamic parameters for pyrolysis of different sawdust biomass[J]. China forest products industry, 2022, 59(7): 30-37, 52.
[10] 谢鸿智, 宁寻安, 邱国强, 等. 木屑生物质热解制备高还原性气体机理[J]. 环境工程学报, 2022, 16(5): 1639-1648.
XIE H Z, NING X A, QIU G Q, et al.Mechanism of pyrolysis of sawdust biomass to produce highly reducing gas[J]. Chinese journal of environmental engineering, 2022, 16(5): 1639-1648.
[11] SEKYERE D T, ZHANG J H, CHEN Y Z, et al.Production of light olefins and aromatics via catalytic co-pyrolysis of biomass and plastic[J]. Fuel, 2023, 333: 126339.
[12] 张绍柱, 王兆铁, 李光辉, 等. 燃烟梗循环流化床锅炉直接用烟梗点火工艺的探索与应用[J]. 工业锅炉, 2017(6): 48-50, 58.
ZHANG S Z, WANG Z T, LI G H, et al.Experiment and application of ignition technology with the peduncle in the operation start of circulating fluidized bed boiler[J]. Industrial boiler, 2017(6): 48-50, 58.
[13] 中华人民共和国国家统计局. 中国统计年鉴2022[M]. 北京: 中国统计出版社, 2023: 379.
National Bureau of Statistics of China. China statistical yearbook 2022[M]. beijing: China Statistics Press, 2023: 379.
[14] 宋丽丽, 魏涛, 杨旭, 等. 烟梗结构特征及其热解特性研究[J]. 轻工学报, 2020, 35(6): 27-34.
SONG L L, WEI T, YANG X, et al.Study on structural and thermal decomposition characteristics of tobacco stem[J]. Journal of light industry, 2020, 35(6): 27-34.
[15] LI X, ZHAO Q Q, HAN M, et al.Pyrolysis characteristics and kinetic analysis of tobacco stem pretreated with different solvents[J]. Biomass conversion and biorefinery, 2022: 1-15.
[16] GU W L, YU Z S, FANG S W, et al.Effects of hydrothermal carbonization on catalytic fast pyrolysis of tobacco stems[J]. Biomass conversion and biorefinery, 2020, 10(4): 1221-1236.
[17] 马萌, 白永辉, 卫俊涛, 等. 生物质与煤(共)热解/气化过程中挥发分-半焦交互作用研究与进展[J]. 化工学报, 2022, 73(11): 5186-5200.
MA M, BAI Y H, WEI J T, et al.Research and progress of volatile-char interaction during biomass and coal(co-) pyrolysis/gasification process[J]. CIESC journal, 2022, 73(11): 5186-5200.
[18] SUNG Y J, SEO Y B.Thermogravimetric study on stem biomass of Nicotiana tabacum[J]. Thermochimica acta, 2009, 486(1/2): 1-4.
[19] YANG H P, YAN R, CHEN H P, et al.Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788.
[20] WANG C, ZHU L F, ZHANG M J, et al.A two-stage circulated fluidized bed process to minimize tar generation of biomass gasification for fuel gas production[J]. Applied energy, 2022, 323: 119639.
[21] MONTIANO M G, FERNÁNDEZ A M, DÍAZ-FAES E, et al. Tar from biomass/coal-containing briquettes. evaluation of PAHs[J]. Fuel, 2015, 154: 261-267.
[22] LAŠIČ JURKOVIĆ D, KOSTYNIUK A, LIKOZAR B. Mechanisms, reaction micro-kinetics and modelling of hydrocracking of aromatic biomass tar model compounds into benzene, toluene and xylenes (BTX) over H-ZSM-5 catalyst[J]. Chemical engineering journal, 2022, 445: 136898.
[23] KOSTYNIUK A, BAJEC D, LIKOZAR B.Catalytic hydrogenation, hydrocracking and isomerization reactions of biomass tar model compound mixture over Ni-modified zeolite catalysts in packed bed reactor[J]. Renewable energy, 2021, 167: 409-424.
[24] JIN Q M, WANG X B, LI S S, et al.Synergistic effects during co-pyrolysis of biomass and plastic: gas, tar, soot, char products and thermogravimetric study[J]. Journal of the Energy Institute, 2019, 92(1): 108-117.
[25] VALDERRAMA RIOS M L, GONZÁLEZ A M, LORA E E S, et al. Reduction of tar generated during biomass gasification: a review[J]. Biomass and bioenergy, 2018, 108: 345-370.
[26] LI C, CHAI M Y, RAHMAN M M, et al.Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons[J]. Renewable energy, 2021, 175: 936-951.
[27] KIBET J, KHACHATRYAN L, DELLINGER B.Molecular products and radicals from pyrolysis of lignin[J]. Environmental science & technology, 2012, 46(23): 12994-13001.
[28] BHANDARI P N, KUMAR A, BELLMER D D, et al.Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas[J]. Renewable energy, 2014, 66: 346-353.
[29] XUE P X, LIU M, YANG H P, et al.Mechanism study on pyrolysis interaction between cellulose, hemicellulose, and lignin based on photoionization time-of-flight mass spectrometer (PI-TOF-MS) analysis[J]. Fuel, 2023, 338: 127276.
[30] LI C Z, ZHAO X C, WANG A Q, et al.Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical reviews, 2015, 115(21): 11559-11624.
[31] SHEN D K, GU S, BRIDGWATER A V.Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of analytical and applied pyrolysis, 2010, 87(2): 199-206.
[32] FONT PALMA C.Modelling of tar formation and evolution for biomass gasification: a review[J]. Applied energy, 2013, 111: 129-141.
[33] ZAREI A, ZHOU Q Q, YU H, et al.Synergetic effect of steam and activated tyre char on the selective production of levoglucosan-rich bio-oil from catalytic pyrolysis of wood chips[J]. Fuel, 2023, 337: 126865.
[34] 龚德鸿, 戴敏. 粒径和氧浓度对烟梗燃烧产物析出特性的影响[J]. 可再生能源, 2020, 38(5): 578-584.
GONG D H, DAI M.Effects of particle size and oxygen concentration on precipitation characteristics of tobacco stem combustion products[J]. Renewable energy resources, 2020, 38(5): 578-584.
[35] IGHALO J O, IWUCHUKWU F U, EYANKWARE O E, et al.Flash pyrolysis of biomass: a review of recent advances[J]. Clean technologies and environmental policy, 2022, 24(8): 2349-2363.
[36] MADHU P, KANAGASABAPATHY H, NEETHI MANICKAM I.Cotton shell utilization as a source of biomass energy for bio-oil by flash pyrolysis on electrically heated fluidized bed reactor[J]. Journal of material cycles and waste management, 2016, 18(1): 146-155.

基金

贵州省科技计划项目(黔科合支撑[2022]一般018)

PDF(2381 KB)

Accesses

Citation

Detail

段落导航
相关文章

/