颗粒破碎对水合物沉积物基质宏-细观力学特性影响的离散元分析

徐爽, 徐佳琳, 许成顺, 焦爽

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 680-690.

PDF(4118 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4118 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 680-690. DOI: 10.19912/j.0254-0096.tynxb.2023-0211

颗粒破碎对水合物沉积物基质宏-细观力学特性影响的离散元分析

  • 徐爽1, 徐佳琳1,2, 许成顺1, 焦爽1
作者信息 +

DISCRETE ELEMENT ANALYSIS OF EFFECT OF PARTICLE BREAKAGE ON MACROSCOPIC AND MICROSCOPIC MECHANICAL PROPERTIES OF HYDRATE-BEARING SEDIMENT MATRICES

  • Xu Shuang1, Xu Jialin1,2, Xu Chengshun1, Jiao Shuang1
Author information +
文章历史 +

摘要

基于“颗粒碎片替换法”建立反映颗粒破碎行为的含水合物沉积物基质离散元模型,与不破碎模型开展对比三轴剪切试验,证明颗粒破碎对强度和剪胀特征具有重要影响。进而应用“粒径膨胀法”提高模型对体应变和颗粒破碎程度的模拟效果,通过一系列低-高有效围压下的模拟三轴排水剪切试验,研究高应力范围及剪切过程中细观力学特征的演化。结果表明:随着有效围压逐渐增大,试样强度、刚度和平均法向接触力均增大,力链网络更加密集且由环状演变为以竖向为主,试样顶部与底部沿轴向运动的颗粒数量增加。颗粒破碎主要发生在剪切初期,力学配位数、平均法向接触力随剪切进行逐渐增大,剪切后期出现贯穿试样的强力链结构,颗粒运动逐渐从杂乱无章变为由顶、底两端向内,试样内部逐渐出现近似“X”形的剪切带。

Abstract

Based on "particle fragmentation replacement method", a discrete element model is developed for hydrate-bearing sediment matrices, which can reflect the behavior of particle breakage. A comparative triaxial shear test is conducted for breakable and non-breaking models, demonstrating that particle breakage has significantly influence on the strength and shear dilatancy characteristics. In addition, the "particle size expansion method" is applied to improve the simulation effect of the model on the volumetric strain and particle breakage degree. A series of simulated triaxial drainage shear tests are conducted under low and high effective confining pressures to evaluate the meso-mechanical characteristics. The results show that with the increase in the effective confining pressure, the strength, stiffness and average normal contact force of the specimen increase, and the force chain gradually is strengthened. The force chain network becomes denser and changes from annular to vertical, while the particles moving along the axial direction at both ends of the sample increase. The particle breakage primarily occurs during the early shearing. The mechanical coordination number and average normal contact force gradually increase with shearing. At the end of the shearing, A strong chain structure and an "X" shape shear band emerges within the sample, and the particles' motion varies from chaotic to top- and bottom-inward.

关键词

天然气水合物 / 数值模拟 / 力学特性 / 砂土破碎 / 粒径膨胀法

Key words

natural gas hydrate / numerical simulation / mechanical properties / sand breakage / particle size expansion method

引用本文

导出引用
徐爽, 徐佳琳, 许成顺, 焦爽. 颗粒破碎对水合物沉积物基质宏-细观力学特性影响的离散元分析[J]. 太阳能学报. 2024, 45(6): 680-690 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0211
Xu Shuang, Xu Jialin, Xu Chengshun, Jiao Shuang. DISCRETE ELEMENT ANALYSIS OF EFFECT OF PARTICLE BREAKAGE ON MACROSCOPIC AND MICROSCOPIC MECHANICAL PROPERTIES OF HYDRATE-BEARING SEDIMENT MATRICES[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 680-690 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0211
中图分类号: TU431   

参考文献

[1] 苏正, 何勇, 吴能友. 南海北部神狐海域天然气水合物热激发开采潜力的数值模拟分析[J]. 热带海洋学报, 2012, 31(5): 74-82.
SU Z, HE Y, WU N Y.Numerical simulation on production potential of hydrate deposits by thermal stimulation[J]. Journal of tropical oceanography, 2012, 31(5): 74-82.
[2] 龚晔, 许天福, 袁益龙, 等. 高压旋喷灌浆法改造近井储层对海洋天然气水合物降压开采潜力影响研究[J]. 太阳能学报, 2022, 43(11): 1-8.
GONG Y, XU T F, YUAN Y L, et al.Study of gas production from marine hydrate-bearing sediments through near-well reservoir reconstruction by high-pressure jet grouting combined with depressurization[J]. Acta energiae solaris sinica, 2022, 43(11): 1-8.
[3] SLOAN E D Jr, KOH C A, KOH C A. Clathrate Hydrates of Natural Gases[M]. CRC Press, 2007.
[4] MAKOGON I F.Hydrates of natural gas[M]. Tulsa, Okla.: PennWell Books, 1981.
[5] 孙金, 吴时国, 朱林奇, 等. 天然气水合物降压开采中海床沉降特征及其影响因素[J]. 中南大学学报(自然科学版), 2022, 53(3): 1033-1046.
SUN J, WU S G, ZHU L Q, et al.Seafloor subsidence characteristics and its influencing factors during methane hydrate production by depressurization method[J]. Journal of central south university (science and technology), 2022, 53(3): 1033-1046.
[6] BOSWELL R, MYSHAKIN E, MORIDIS G, et al.India National Gas Hydrate Program Expedition 02 summary of scientific results: numerical simulation of reservoir response to depressurization[J]. Marine and petroleum geology, 2019, 108: 154-166.
[7] MYSHAKIN E M, SEOL Y, LIN J S, et al.Numerical simulations of depressurization-induced gas production from an interbedded turbidite gas hydrate-bearing sedimentary section in the offshore India: site NGHP-02-16 (Area-B)[J]. Marine and petroleum geology, 2019, 108: 619-638.
[8] XU J L, XU C S, WANG R, et al.Microscopic mechanism analysis of influence of high effective confining pressure on mechanical properties of hydrate-bearing sediments[J]. Computers and geotechnics, 2022, 152: 105011.
[9] XU J L, XU C S, YOSHIMOTO N, et al.Experimental investigation of the mechanical properties of methane hydrate-bearing sediments under high effective confining pressure[J]. Journal of geotechnical and geoenvironmental engineering, 2022, 148(3): 1-14.
[10] CUNDALL P A.The measurement and analysis of acceleration in rock slopes[D]. London: University of London, Imperial College of Science and Technology, 1971.
[11] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
[12] 王刚, 杨俊杰, 王兆南. 钙质砂临界状态随颗粒破碎演化规律分析[J]. 岩土工程学报, 2021, 43(8): 1511-1517.
WANG G, YANG J J, WANG Z N.Evolution of critical state of calcareous sand during particle breakage[J]. Chinese journal of geotechnical engineering, 2021, 43(8): 1511-1517.
[13] 徐琨, 周伟, 马刚. 颗粒破碎对堆石料填充特性缩尺效应的影响研究[J]. 岩土工程学报, 2020, 42(6): 1013-1022.
XU K, ZHOU W, MA G.Influence of particle breakage on scale effect of filling characteristics of rockfill material[J]. Chinese journal of geotechnical engineering, 2020, 42(6): 1013-1022.
[14] CIANTIA M O, ARROYO M, CALVETTI F, et al.An approach to enhance efficiency of DEM modelling of soils with crushable grains[J]. Géotechnique, 2015, 65(2): 91-110.
[15] 杨贵, 许建宝, 刘昆林. 粗粒料颗粒破碎数值模拟研究[J]. 岩土力学, 2015, 36(11): 3301-3306.
YANG G, XU J B, LIU K L.Numerical simulation of particle breakage of coarse aggregates[J]. Rock and soil mechanics, 2015, 36(11): 3301-3306.
[16] SHI D D, CAO D, DENG Y B, et al.DEM investigations of the effects of intermediate principal stress ratio and particle breakage on the critical state behaviors of granular soils[J]. Powder technology, 2021, 379: 547-559.
[17] BEN-NUN O, EINAV I.The role of self-organization during confined comminution of granular materials[J]. Philosophical transactions Series A, Mathematical, physical, and engineering sciences, 2010, 368(1910): 231-247.
[18] 张科芬, 张升, 滕继东, 等. 离散元中破碎自组织对颗粒破碎影响研究[J]. 岩土工程学报, 2018, 40(4): 743-751.
ZHANG K F, ZHANG S, TENG J D, et al.Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese journal of geotechnical engineering, 2018, 40(4): 743-751.
[19] ELGHEZAL L, JAMEI M, GEORGOPOULOS I O.DEM simulations of stiff and soft materials with crushable particles: an application of expanded perlite as a soft granular material[J]. Granular matter, 2013, 15(5): 685-704.
[20] 徐靖, 叶华洋, 朱晟. 粗粒料颗粒破碎三维离散元模型及其在密度桶试验中的应用[J]. 河海大学学报(自然科学版), 2022, 50(4): 127-134.
XU J, YE H Y, ZHU S.Three-dimensional discrete element model of coarse particle breakage and engineering application in density barrel test[J]. Journal of hohai university (natural sciences), 2022, 50(4): 127-134.
[21] RUSSELL A R, MUIR WOOD D, KIKUMOTO M.Crushing of particles in idealised granular assemblies[J]. Journal of the mechanics and physics of solids, 2009, 57(8): 1293-1313.
[22] CHRISTENSEN R M.Yield functions, damage states, and intrinsic strength[J]. Mathematics and mechanics of solids, 2000, 5(3): 285-300.
[23] MCDOWELL G R.On the yielding and plastic compression of sand[J]. Soils and foundations, 2002, 42(1): 139-145.
[24] YU Y X, CHENG Y P, XU X M, et al.Discrete element modelling of methane hydrate soil sediments using elongated soil particles[J]. Computers and geotechnics, 2016, 80: 397-409.
[25] LIU J W, LI X S, KOU X, et al.Analysis of hydrate heterogeneous distribution effects on mechanical characteristics of hydrate-bearing sediments[J]. Energy & fuels, 2021, 35(6): 4914-4924.
[26] JUNG J W, SANTAMARINA J C, SOGA K.Stress-strain response of hydrate-bearing sands: numerical study using discrete element method simulations[J]. Journal of geophysical research: solid earth, 2012, 117(B4): B04202.
[27] 徐永福, 奚悦, 冯兴波, 等. 岩石单颗粒压缩破碎的数值模拟分析[J]. 工程地质学报, 2015, 23(4): 589-596.
XU Y F, XI Y, FENG X B, et al.Simulation of rock grain breakage using PFC2d[J]. Journal of engineering geology, 2015, 23(4): 589-596.
[28] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018.
SHI C, ZHANG Q, WANG S N.Numerical simulation technology and application with particle flow code (PFC 5.0)[M]. Beijing: China Architecture & Building Press, 2018.
[29] 杨平. 土力学[M]. 北京: 机械工业出版社, 2005.
YANG P.Soil mechanics[M]. Beijing: China Machine Press, 2005.
[30] THORNTON C, ANTONY S J.Quasi-static deformation of particulate media[J]. Philosophical transactions of the royal society of London series A: mathematical, physical and engineering sciences, 1998, 356(1747): 2763-2782.
[31] 孙其诚, 厚美瑛, 金峰, 等. 颗粒物质物理与力学[M]. 北京: 科学出版社, 2011: 188-189.
SUN Q C, HOU M Y, JIN F.Physics and mechanics of granular materials[M]. Beijing: Science Press, 2011: 188-189.

基金

国家自然科学基金杰出青年基金(52225807)

PDF(4118 KB)

Accesses

Citation

Detail

段落导航
相关文章

/