基于点吸收式波能装置风浪联合获能系统动力特性研究

于明琦,曹飞飞,魏志文,史宏达,姜娟,田会元

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 29-36.

PDF(6257 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6257 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 29-36. DOI: 10.19912/j.0254-0096.tynxb.2023-0213

基于点吸收式波能装置风浪联合获能系统动力特性研究

  • 于明琦1,曹飞飞1~3,魏志文1,史宏达1~3,姜娟4,田会元4
作者信息 +

STUDY ON DYNAMIC CHARACTERISTICS OF HYBRID WIND-WAVE ENERGY HARVESTING SYSTEM BASED ON POINT ABSORBING WEC

  • Yu Mingqi1, Cao Feifei1~3, Wei Zhiwen1, Shi Hongda1~3, Jiang Juan4, Tian Huiyuan4
Author information +
文章历史 +

摘要

基于风和波浪的伴生关系及波浪能与风能同时获取的可行性,提出一种基于半潜式风力机与点吸收式波能装置的新型风浪联合获能系统。建立考虑等效(PTO)的全过程风-浪-多体耦合时域分析模型,并研究波能装置设计参数对波浪能输出功率的影响规律,重点研究风浪联合运行海况下新型风浪联合获能系统的结构动力响应特征与获能特性。结果表明,波能装置的安装对平台纵荡运动和系泊系统产生不利影响,对风力涡轮机的影响较小,此外垂荡和纵摇响应均随波能装置的加入得到抑制,纵摇角平均值减小25%,垂荡位移标准差减小42%,与漂浮式风力机相比,联合获能系统的平均输出功率增加17%。

Abstract

According to the companion relationship between marine wind and wave resources, it is extremely feasible to harvest wind and wave energy simultaneously. Based on this, a novel combined wind-wave energy harvesting system with a semi-submersible wind turbine and point absorption wave energy converter(WEC) is proposed. A fully-coupled wind-wave-multi body time domain analysis model considering equivalent PTO (power take-off) is developed in this work. The influence law of wave energy converter parameters on power performance is investigated, focusing on the structural dynamic response characteristics and energy acquisition characteristics of the novel system under a hybrid wind-wave operation sea state. The results show that the installation of the wave energy converter adversely affects the surge motion of the semi-submersible platform and the mooring lines, but has less impact on the wind turbine. In addition, both the heave and pitch responses of the platform are suppressed with the addition of the wave energy converter, the average pitch angle is reduced by 25%, the standard deviation of the heave motion is reduced by 42%, and the average power of the combined system is increased by 17% compared with the single floating wind turbine.

关键词

波浪能转换 / 海上风电 / 时域分析 / 动力响应 / 获能特性 / 联合获能系统

Key words

wave energy conversion / offshore wind power / time domain analysis / dynamic response / energy-acquiring characteristics / combined energy harvesting system

引用本文

导出引用
于明琦,曹飞飞,魏志文,史宏达,姜娟,田会元. 基于点吸收式波能装置风浪联合获能系统动力特性研究[J]. 太阳能学报. 2024, 45(6): 29-36 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0213
Yu Mingqi, Cao Feifei, Wei Zhiwen, Shi Hongda, Jiang Juan, Tian Huiyuan. STUDY ON DYNAMIC CHARACTERISTICS OF HYBRID WIND-WAVE ENERGY HARVESTING SYSTEM BASED ON POINT ABSORBING WEC[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 29-36 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0213
中图分类号: P743.2   

参考文献

[1] XUE L, WANG J D, ZHAO L Y, et al.Wake interactions of two tandem semisubmersible floating offshore wind turbines based on FAST. Farm[J]. Journal of marine science and engineering, 2022, 10(12): 1962
[2] CHEN G, BELCHER S E.Effects of long waves on wind-generated waves[J]. Journal of physical oceanography, 2000, 30(9): 2246-2256.
[3] REN N X, MA Z, SHAN B H, et al.Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions[J]. Renewable Energy, 2020, 151: 966-974.
[4] SARMIENTO J, ITURRIOZ A, AYLLÓN V, et al. Experimental modelling of a multi-use floating platform for wave and wind energy harvesting[J]. Ocean engineering, 2019, 173: 761-773.
[5] CHEN W X, GAO F, MENG X D, et al.W2P: a high-power integrated generation unit for offshore wind power and ocean wave energy[J]. Ocean engineering, 2016, 128: 41-47.
[6] ZHANG H J, ZHANG N C, CAO X Y.Conceptualization and dynamic response of an integrated system with a semi-submersible floating wind turbine and two types of wave energy converters[J]. Ocean engineering, 2023, 269: 113517.
[7] WANG Y P, SHI W, MICHAILIDES C, et al.WEC shape effect on the motion response and power performance of a combined wind-wave energy converter[J]. Ocean engineering, 2022, 250: 111038.
[8] GHAFARI H R, GHASSEMI H, ABBASI A, et al.Novel concept of hybrid wavestar- floating offshore wind turbine system with rectilinear arrays of WECs[J]. Ocean engineering, 2022, 262: 112253.
[9] SI Y L, CHEN Z, ZENG W J, et al.The influence of power-take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters[J]. Ocean engineering, 2021, 227: 108835.
[10] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[EB/OL]. [2009-02-01], Doi: 10, 2172/947422.
[11] ANSYS Inc.ANSYS AQWA user's manual[R]. Release 13.0, 2010.
[12] MORIARTY P J, HANSEN A C.AeroDyn theory manual [R]. National renewable energy laboratory, NREL/EL500-36881, 2005.
[13] 王树青, 梁丙臣. 海洋工程波浪力学[M]. 青岛: 中国海洋大学出版社, 2013.
WANG S Q, LIANG B C.Wave mechanics for ocean engineering[M]. Qingdao: China Ocean University Press, 2013.
[14] SUN Z Y, CHEN J, SHEN W Z, et al.Improved blade element momentum theory for wind turbine aerodynamic computations[J]. Renewable energy, 2016, 96: 824-831.
[15] KREUZER E, WILKE U.Mooring systems-A multibody dynamic approach[J]. Multibody system dynamics, 2002, 8(3): 279-296.

基金

国家自然科学基金(52271297); 山东省自然科学基金(ZR2022ME002; ZR2021ZD23); 中国工程院战略研究与咨询项目(2022-DFZD-36)

PDF(6257 KB)

Accesses

Citation

Detail

段落导航
相关文章

/