针对风电项目工程规模大、工区分散、工期紧等难点与特点,提出以工程建设管控内容为物理对象(PE)、以BIM虚拟模型为孪生载体(VE)、以双向孪生数据为核心(DD)、以协同管控为目标(WM)、以协同运行规则(RU)为驱动的风电项目建设智能四维协同数字孪生模型,利用GPS-RTK+UWB无缝耦合定位技术结合自主研发的物联感知装备实现建设信息全方位智能感知,以GIS模型为数据空间集成底板,以BIM模型为数据业务集成底板形成具备交互分析特征的数字孪生载体,通过对类似及目标工程建设数据的深度学习,按过程结合综合评定体系实现建设项目的管控协同评判。通过在腊巴山风电建设项目的应用,证明该技术可实现对工程高精度、秒级的实时感知,提供轻量化、可供分析、虚实融合的孪生载体,并能根据建设环境动态调整评判参数,较准确地对风电工程建设情况进行评判,为各方协同管理提供技术支持。
Abstract
Aiming at the difficulties and characteristics of wind power projects, such as large project scale, dispersed work areas, and short timelines, an intelligent 4-dimensional collaborative digital twin model of wind power project construction is proposed, with engineering construction control content as the physical object (PE), BIM virtual model as the twin carrier (VE), bidirectional twin data as the core (DD), collaborative control as the goal (WM), and collaborative operation rules(RU) as the driver. The model uses GPS-RTK+UWB seamless coupling positioning technology in conjunction with self-developed IOT perception equipment to realize all-round intelligent perception of construction information, takes GIS model as data space integration base plate, takes BIM model as data business integration base plate to form a digital twin carrier with interactive analysis characteristics. Through deep learning of similar and target project construction data, the management and control collaborative evaluation of construction projects is realized according to the process and comprehensive evaluation system.Through the application in the Labashan wind power construction project, it is proved that the technology can realize the real-time perception of the high precision and second level of the project, provide the twin carrier of lightweight, available for analysis, virtual and real fusion, and can dynamically adjust the evaluation parameters according to the construction environment, more accurately judge the wind power project construction situation, and provide technical support for collaborative management of all parties.
关键词
数字孪生 /
深度学习 /
风电建设 /
协同管控 /
工作分解结构 /
BIM
Key words
digital twin /
deep learning /
wind powe construction /
collaborative control /
work breakdown structure /
BIM
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42(6): 409-418.
ZHU R, WANG Y, XIANG Y, et al.Stydy on climate characteristics and development potential of wind energy resources in China[J]. Acta energiae solaris sinica, 2021, 42(6): 409-418.
[2] 朱蓉, 徐红, 龚强, 等. 中国风能开发利用的风环境区划[J]. 太阳能学报, 2023, 44(3): 55-66.
ZHU R, XU H, GONG Q, et al.Wind environmental regionalization for development and utilization of wind energy in China[J]. Acta energiae solaris sinica, 2023, 44(3): 55-66.
[3] 卢正帅, 林红阳, 易杨. 风电发展现状与趋势[J]. 中国科技信息, 2017(2): 91-92.
LU Z S, LIN H Y, YI Y.Present situation and trend of wind power development[J]. China science and technology information, 2017(2): 91-92.
[4] 金晓航, 秦治伟, 郭远晶, 等. 基于改进劣化度模型的风电机组日常运行状态评估[J]. 太阳能学报, 2023, 44(1): 239-246.
JIN X H, QIN Z W, GUO Y J, et al.Evaluation of wind turbines daily operation conditions based on improved degradation model[J]. Acta energiae solaris sinica, 2023, 44(1): 239-246.
[5] TAO F, XIAO B, QI Q L, et al.Digital twin modeling[J]. Journal of manufacturing systems, 2022, 64: 372-389.
[6] LI L H, LEI B B, MAO C L.Digital twin in smart manufacturing[J]. Journal of industrial information integration, 2022, 26: 100289.
[7] 陈健, 盛谦, 陈国良, 等. 岩土工程数字孪生技术研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(8): 79-88.
CHEN J, SHENG Q, CHEN G L, et al.Research progress in digital twin technology for geotechnical engineering[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2022, 50(8): 79-88.
[8] WANG J F, ZHANG L Y, LIN K Y, et al.A digital twin modeling approach for smart manufacturing combined with the UNISON framework[J]. Computers & industrial engineering, 2022, 169: 108262.
[9] GHOSH A K, ULLAH A S, TETI R, et al.Developing sensor signal-based digital twins for intelligent machine tools[J]. Journal of industrial information integration, 2021, 24: 100242.
[10] 汤圣君, 张叶廷, 许伟平, 等. 三维GIS中的参数化建模方法[J]. 武汉大学学报(信息科学版), 2014, 39(9): 1086-1090, 1097.
TANG S J, ZHANG Y T, XU W P, et al.Parametric modeling method in three-dimensional GIS[J]. Geomatics and information science of Wuhan university, 2014, 39(9): 1086-1090, 1097.
[11] 钟登华, 时梦楠, 崔博, 等. 大坝智能建设研究进展[J]. 水利学报, 2019, 50(1): 38-52, 61.
ZHONG D H, SHI M N, CUI B, et al.Research progress of the intelligent construction of dams[J]. Journal of hydraulic engineering, 2019, 50(1): 38-52, 61.
[12] 范华冰, 李文滔, 魏欣, 等. 数字孪生医院: 雷神山医院BIM技术应用与思考[J]. 华中建筑, 2020, 38(4): 68-71.
FAN H B, LI W T, WEI X, et al.Digital twin hospital: consideration and application of BIM technology in Leishenshan hospital[J]. Huazhong architecture, 2020, 38(4): 68-71.
[13] 张社荣, 姜佩奇, 吴正桥. 水电工程设计施工一体化精益建造技术研究进展: 数字孪生应用模式探索[J]. 水力发电学报, 2021, 40(1): 1-12.
ZHANG S R, JIANG P Q, WU Z Q.Advances in research of lean construction technology of integrated design and construction for hydropower projects: exploration of digital twin application mode[J]. Journal of hydroelectric engineering, 2021, 40(1): 1-12.
[14] 杨顺群, 郭莉莉, 刘增强. 水利水电工程数字化建设发展综述[J]. 水力发电学报, 2018, 37(8): 75-84.
YANG S Q, GUO L L, LIU Z Q.Overview on digital construction in water conservancy and hydropower engineering[J]. Journal of hydroelectric engineering, 2018, 37(8): 75-84.
[15] 樊启祥, 周绍武, 林鹏, 等. 大型水利水电工程施工智能控制成套技术及应用[J]. 水利学报, 2016, 47(7): 916-923, 933.
FAN Q X, ZHOU S W, LIN P, et al.Construction intelligent control packaged technology and its application for a large hydropower project[J]. Journal of hydraulic engineering, 2016, 47(7): 916-923, 933.
[16] 房方, 姚贵山, 胡阳, 等. 风力发电机组数字孪生系统[J]. 中国科学: 技术科学, 2022, 52(10): 1582-1594.
FANG F, YAO G S, HU Y, et al.Digital twin system of a wind turbine[J]. Scientia sinica (technologica), 2022, 52(10): 1582-1594.
[17] 朱庆, 曾浩炜, 谢潇, 等. 风电系统全生命周期可视化智能管理平台关键技术[J]. 西南交通大学学报, 2020, 55(1): 1-8.
ZHU Q, ZENG H W, XIE X, et al.Key technologies in visualized intelligent management platform for life cycle of wind power systems[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 1-8.
[18] 彭怀午, 胡己坤, 田伟辉, 等. 风电场智能化设计云平台关键技术探讨[J]. 水力发电, 2020, 46(9): 19-22, 62.
PENG H W, HU J K, TIAN W H, et al.Discussion on key technologies of intelligent design cloud platform for wind farm[J]. Water power, 2020, 46(9): 19-22, 62.
[19] 贺兴, 艾芊, 朱天怡, 等. 数字孪生在电力系统应用中的机遇和挑战[J]. 电网技术, 2020, 44(6): 2009-2019.
HE X, AI Q, ZHU T Y, et al.Opportunities and challenges of the digital twin in power system applications[J]. Power system technology, 2020, 44(6): 2009-2019.