针对“双碳”目标下高比例可再生能源高效消纳难题,将水电解制氢作为弹性负荷接入微电网群,建立电-氢微电网群,提出一种功率协调控制和电能质量提升策略。首先分析交直流子网功率耦合机制,基于互联变换器建立考虑子网优先级的双向功率控制方法,将弹性负荷接入低优先级子网,提出基于实时子网偏差系数计算的分层功率协调控制策略;然后针对由水电解制氢整流器引入的谐波问题,提出基于实时负荷阻抗估计和下垂控制的多台互联变换器协同提升电能质量的控制技术;最后,通过Matlab/Simulink软件平台,搭建环形连接微电网群,仿真实验结果表明所提策略动态响应快,验证了功率协调和谐波补偿控制策略的有效性。
Abstract
Aiming at the problem of efficiently consuming ahigh proportion of renewable energy under the dual carbon goals, hydrogen production through water electrolysis is connected to the microgrid clusters as resilient load, and the electricity-hydrogen energy microgrid clusters is established, and the power coordinated control and power quality improvement strategyies are proposed. Firstly, the power coupling mechanism of AC/DC subgrid is analyzed, a bidirectional power control method considering subnet priority is established based on the interlinking converter, and the resilient load is connected to the low-priority subgrid, and a hierarchical power coordination control strategy based on real-time operation state-deviation in each-subgrid calculation is proposed. Then, aiming at the harmonic problem introduced by the rectifier for hydrogen production through water electrolysis, a control technology based on real-time load impedance estimation and droop control of multiple interconnected converters to improve power quality is proposed. Finally, through the Matlab/Simulink software platform, a ring connection microgrid clusters is built, and the experimental results show that the proposed strategy has fast dynamic response, which verifies the effectiveness of the power coordinated control and harmonic compensation strategies.
关键词
氢能 /
制氢 /
微电网 /
变换器 /
分层功率协调控制 /
谐波补偿
Key words
hydrogen energy /
hydrogen production /
microgrid /
converter /
hierarchical power coordinated control /
harmonic compensation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丁明, 潘浩, 张晶晶. 分布式电源接入交直流混合微电网群优化规划研究[J]. 太阳能学报, 2021, 42(6): 54-62.
DING M, PAN H, ZHANG J J.Research on optimal planning of AC/DC hybrid microgrid cluster with distributed generation access[J]. Acta energiae solaris sinica, 2021, 42(6): 54-62.
[2] 尉倥, 段立强, 朱自强, 等. 太阳能驱动的固体氧化物电解池制氢系统性能研究[J]. 太阳能学报, 2022, 43(6): 536-545.
YU K, DUAN L Q, ZHU Z Q, et al.Performance study on solid oxide electrolytic cell hydrogen production system driven by solar energy[J]. Acta energiae solaris sinica, 2022, 43(6): 536-545.
[3] YANG Y, MA C, LIAN C, et al.Optimal power reallocation of large-scale grid-connected photovoltaic power station integrated with hydrogen production[J]. Journal of cleaner production, 2021, 298: 126830.
[4] 周京华, 翁志鹏, 宋晓通. 兼顾可靠性与经济性的孤岛型光储微电网容量配置方法[J]. 电力系统自动化, 2021, 45(8): 166-174.
ZHOU J H, WENG Z P, SONG X T.Capacity configuration method of islanded microgrid with photovoltaic and energy storage system considering reliability and economy[J]. Automation of electric power systems, 2021, 45(8): 166-174.
[5] YANG X D, ZHANG Y B, WU H F, et al.Enabling online scheduling for multi-microgrid systems: an event-triggered approach[J]. IEEE transactions on smart grid, 2021, 12(3): 1836-1852.
[6] YAN M Y, SHAHIDEHPOUR M, PAASO A, et al.Distribution network-constrained optimization of peer-to-peer transactive energy trading among multi-microgrids[J]. IEEE transactions on smart grid, 2021, 12(2): 1033-1047.
[7] 李蕊睿, 李奇, 蒲雨辰, 等. 计及功率交互约束的含电—氢混合储能的多微电网系统容量优化配置[J]. 电力系统保护与控制, 2022, 50(14): 53-64.
LI R R, LI Q, PU Y C, et al.Optimal configuration of an electric-hydrogen hybrid energy storage multi-microgrid system considering power interaction constraints[J]. Power system protection and control, 2022, 50(14): 53-64.
[8] 周建萍, 薛亚林, 徐征. 基于功率交互和充放速率优化的交直流混合微网控制策略研究[J]. 太阳能学报, 2018, 39(12): 3558-3567.
ZHOU J P, XUE Y L, XU Z.Research on ac/dc hybrid micro-grid control strategy based on power interaction and charge-discharge rate optimization[J]. Acta energiae solaris sinica, 2018, 39(12): 3558-3567.
[9] 王琪, 王斌, 徐万万, 等. 混合微电网互联变换器功率分配优化控制研究[J]. 控制工程, 2021, 28(2): 388-394.
WANG Q, WANG B, XU W W, et al.Research on power distribution optimization control of hybrid microgrid interlinking converter[J]. Control engineering of China, 2021, 28(2): 388-394.
[10] CHEN B, WANG J H, LU X N, et al.Networked microgrids for grid resilience, robustness, and efficiency: a review[J]. IEEE transactions on smart grid, 2021, 12(1): 18-32.
[11] HOU X C, SUN K, ZHANG N, et al.Priority-driven self-optimizing power control scheme for interlinking converters of hybrid AC/DC microgrid clusters in decentralized manner[J]. IEEE transactions on power electronics, 2022, 37(5): 5970-5983.
[12] 杨义, 杨苹, 唐玉烽. 兼具电能质量补偿功能的互联变换器统一控制策略[J]. 电力系统自动化, 2021, 45(15): 132-140.
YANG Y, YANG P, TANG Y F.Unified control strategy with power quality compensation function for interlinking converters[J]. Automation of electric power systems, 2021, 45(15): 132-140.
[13] SHAHPARASTI M, MOHAMADIAN M, BABOLI P T, et al.Toward power quality management in hybrid AC-DC microgrid using LTC-L utility interactive inverter: load voltage-grid current tradeoff[J]. IEEE transactions on smart grid, 2017, 8(2): 857-867.
[14] TIAN H, WEN X H, LI Y W.A harmonic compensation approach for interlinking voltage source converters in hybrid AC-DC microgrids with low switching frequency[J]. CSEE journal of power and energy systems, 2018, 4(1): 39-48.
[15] MICALLEF A, APAP M, SPITERI-STAINES C, et al.Mitigation of harmonics in grid-connected and islanded microgrids via virtual admittances and impedances[J]. IEEE transactions on smart grid, 2017, 8(2): 651-661.
[16] 王自力, 陈燕东, 伍文华, 等. 不同容量VSG并联的自适应谐波阻抗重塑均流控制方法及其稳定性分析[J]. 中国电机工程学报, 2021, 41(24): 8571-8585.
WANG Z L, CHEN Y D, WU W H, et al.Adaptive harmonic impedance reshaping current-sharing control method of parallel VSGs with different capacities and its stability analysis[J]. Proceedings of the CSEE, 2021, 41(24): 8571-8585.
[17] ATLAM O, KOLHE M.Equivalent electrical model for a proton exchange membrane(PEM) electrolyser[J]. Energy conversion and management, 2011, 52(8/9): 2952-2957.
[18] 曾正, 赵荣祥, 杨欢. 柔性并网逆变器控制技术[M]. 北京: 科学出版社, 2020.
ZENG Z, ZHAO R X, YANG H.Control techniques for flexible grid-connected inverter[M]. Beijing: Science Press, 2020.
基金
湖北省自然科学基金青年项目(2021CFB030); 国家自然科学基金面上项目(51877161)