基于CFD及有限单元法,利用ANSYS Workbench平台的Fluent与Transient Structural模块,对NREL 5 MW风电机组复合材料叶片在极端运行阵风下的气动特性及结构力学特性进行研究。结果表明:风轮气动载荷受极端运行阵风的影响较大,极端运行阵风作用下,风力机转矩及轴向推力等随风速的变化出现较大幅值的响应且响应峰值较阵风峰值均有所提前;叶片位移随风速的变化在峰值风速的前后出现大小两个峰值;在风速达到峰值时,与均匀来流阶段相比,叶片表面应力整体增幅较大。
Abstract
Based on CFD and finite element method, the aerodynamic characteristics and structural mechanical properties of the NREL 5 MW wind turbine composite blade under extreme operating gusts are studied by using Fluent and Transient Structural modules of ANSYS Workbench platform. The results show that aerodynamic loads of the wind turbines are greatly affected by the extreme operating gust. Under the extreme operating gust, the torque and axial thrust of the wind turbine have a large respond greatly with the change of wind speed, and the peak value of the response is earlier than that of the gust. The blade displacement with the change of wind speed appears two peaks before and after the peak of wind speed. When the wind speed reaches the peak, the surface stress of the blade increases greatly compared with that of the uniform-stream stage.
关键词
风力机叶片 /
复合材料 /
流固耦合 /
极端运行阵风 /
数值模拟
Key words
wind turbine blades /
composite materials /
fluid structure interaction /
extreme operating gusts /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周文平, 唐胜利, 吕红. 风剪切和动态来流对水平轴风力机尾迹和气动性能的影响[J]. 中国电机工程学报, 2012, 32(14): 122-127.
ZHOU W P, TANG S L, LÜ H.Effect of transient wind shear and dynamic inflow on the wake structure and performance of horizontal axis wind turbine[J]. Proceedings of the CSEE, 2012, 32(14): 122-127.
[2] TRAN T T, KIM D H, BAE K S.Extreme load estimation for a large wind turbine using CFD and Unsteady BEM[J]. Computational science and its applications, 2013, 7975: 127-142.
[3] 曹莉, 孙文磊, 周建星. 基于模态叠加法的大型风力机典型工况动态特性分析[J]. 振动与冲击, 2018, 37(16): 185-189.
CAO L, SUN W L, ZHOU J X.Dynamic characteristics of large wind turbines under typical operating conditions based on modal superposition method[J]. Journal of vibration and shock, 2018, 37(16): 185-189.
[4] 李仁年, 刘恒, 李德顺, 等. 极端运行阵风下风力机的气动特性[J]. 兰州理工大学学报, 2018, 44(2): 59-64.
LI R N, LIU H, LI D S, et al.Aerodynamic characteristics of wind turbine under extreme operating gusts[J]. Journal of Lanzhou University of Technology, 2018, 44(2): 59-64.
[5] 宋学官, 蔡林, 张华. ANSYS流固耦合分析与工程实例[M]. 北京: 中国水利水电出版社, 2012: 1-5.
SONG X G, CAI L, ZHANG H.ANSYS fluid-solid coupling analysis and engineering examples[M]. Beijing: China Water & Power Press, 2012: 1-5.
[6] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. NREL/TP-500- 38060, 2009.
[7] RESOR B R.Definition of a 5 MW/61.5 m wind turbine blade reference model[R].SAND2013-2569, 2013.
[8] IEC 61400-1, Wind energy generation systems-part 1: design requirements[S].
[9] 袁带英, 唐子雷. 风场风力条件评估系统开发[J]. 电网与清洁能源, 2009, 25(8): 50-53.
YUAN D Y, TANG Z L.Evaluation system of wind condition in wind farm[J]. Power system and clean energy, 2009, 25(8): 50-53.
[10] 李惠彬. 振动理论与工程应用[M]. 北京: 北京理工大学出版社, 2006: 44-50.
LI H B.Vibration theory and engineering application[M]. Beijing: Beijing University of Technology Press, 2006: 44-50.
[11] 张立, 缪维跑, 李春, 等. 基于弯扭耦合的大型风力机复合材料叶片结构特性研究[J]. 机械强度, 2021, 43(6): 1382-1392.
ZHANG L, MIAO W P, LI C, et al.Study on the structural characteristics of large wind turbine composite blade based on bend-twist coupling[J]. Journal of mechanical strength, 2021, 43(6): 1382-1392.
[12] 区家隽, 李学敏, 徐林. 水平轴风力机叶片的截面与动力特性分析[J]. 可再生能源, 2016, 34(5): 681-686.
QU J J, LI X M, XU L.Analysis of blade section and dynamic characteristics of horizontal axis wind turbine[J]. Renewable energy, 2016, 34(5): 681-686.