红外热图像探测热斑的过程中,会受到复杂环境以及采集过程引入的诸多因素干扰,导致常规图像处理方法无法准确检测出热斑。提出一种改进的热斑检测方法,该方法根据灰度直方图特征进行自适应节点配置的B样条拟合,从而实现阈值选取和热斑分割,不仅同样具有抑制噪声的特点,且提高了热斑检测的准确率。实验证明该方法能实现含有大量噪声的光伏组件红外热图像的热斑检测,提高热斑检测的效率和准确率。
Abstract
In the process of hot spot detection with infrared thermal images, the thermal images will be interfered by many factors introduced by complex environment and acquisition process, resulting in the inability of conventional image processing methods to accurately detect hot spots. An improved hot spot detection method is proposed in this paper, which fits the histogram using the B-spline of adaptive knots according to the grayscale histogram features, so as to realize threshold selection and hot spot segmentation. The method not only has the same characteristics of suppressing noise, but also improves the accuracy of hot spot detection. Experimental results show that this method can realize the hot spot detection of infrared thermal images of photovoltaic modules containing a lot of noise and improve the efficiency and accuracy of hot spot detection.
关键词
光伏组件 /
热斑 /
红外热图像 /
B样条 /
自适应节点
Key words
photovoltaic modules /
hot spot /
infrared thermal image /
B-spline /
adaptive knots
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WOHLGEMUTH J H, KURTZ S R.How can we make PV modules safer?[C]//2012 38th IEEE Photovoltaic Specialists Conference. Austin, TX, USA, 2012: 3162-3165.
[2] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[3] 樊涛, 孙涛, 刘虎. 基于注意力机制的光伏组件热斑检测算法[J]. 北京航空航天大学学报, 2022, 48(7): 1304-1313.
FAN T, SUN T, LIU H.Hot spot detection algorithm of photovoltaic module based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1304-1313.
[4] AFIFAH A N N, INDRABAYU, SUYUTI A, et al. A New Approach for Hot Spot Solar Cell Detection based on Multi-level Otsu Algorithm[C]//2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). Surabaya, Indonesia, 2021: 278-282.
[5] MOHD M R S, HERMAN S H, SHARIF Z. Application of K-Means clustering in hot spot detection for thermal infrared images[C]//2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). Langkawi, Malaysia, 2017: 107-110.
[6] CHEN J, LI Y J, LING Q.Hot-spot detection for thermographic images of solar panels[C]//2020 Chinese Control and Decision Conference (CCDC). Hefei, China, 2020: 4651-4655.
[7] LI G L, WANG Y J, XU Z, et al.Research and application of photovoltaic power station on-line hot spot detection operation and maintenance system based on unmanned aerial vehicle infrared and visible light detection[C]//2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Chengdu, China, 2021: 403-408.
[8] ZOU Z Y, HU Y H, GAO B, et al.Temperature recovery from degenerated infrared image based on the principle for temperature measurement using infrared sensor[J]. Journal of applied physics, 2014, 115(4): 043522-043532.
[9] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating PV arrays through IR thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[10] 李晓晔. 三次B样条数据拟合的节点自适应选取算法[D]. 大连: 大连理工大学, 2008.
LI X Y.An adaptive algorithm for knots of cubic B-spline in data fitting[D]. Dalian: Dalian University of Technology, 2008.
[11] 曹娟, 欧阳永昇, 陈中贵, 等. 非均匀B样条曲面的自适应节点设置方法[J]. 计算机辅助设计与图形学学报, 2015, 27(1): 60-67.
CAO J, OUYANG Y S, CHEN Z G, et al.Adaptive knot placement in non-uniform B-spline surface fitting[J]. Journal of computer-aided design & computer graphics, 2015, 27(1): 60-67.
[12] HUSSAIN M Z, KHALID M, IRSHAD M, et al.Spline functions and genetic algorithm for reverse engineering of symmetric 3D models[C]//2019 23rd International Conference in Information Visualization-Part II. Adelaide, SA, Australia, 2019: 134-140.
[13] AMMAD M, RAMLI A.Cubic B-spline curve interpolation with arbitrary derivatives on its data points[C]//2019 23rd International Conference in Information Visualization-Part II. Adelaide, SA, Australia, 2019: 156-159.
基金
国家重点研发计划(2018YFB1500800); 中央高校基本科研业务费专项资金(PA2022GDGP0032)