以某跟踪式光伏发电系统为研究对象,通过编写自定义程序代码UDF对Fluent进行二次开发,建立单轴跟踪式光伏结构的二维模型,研究其在风荷载作用下的扭转振动问题。研究结果表明:风速达到某一特值后,结构出现等幅周期性振动,发生软颤振现象,而其阻尼比对抑制扭转振动有一定的作用,这同实际情况较吻合;光伏组件倾角在0°~20°范围内时,倾角越大,扭转振动的临界风速越低。
Abstract
Taking a tracking photovoltaic power generation system as the research object, Fluent software was developed twice by writing a custom program code UDF, and a two-dimensional model of single-axis tracking photovoltaic structure was established, and its torsional vibration under wind load was studied. The results show that when the wind speed reaches a certain special value, the photovoltaic panel has periodic vibration with equal amplitude and soft flutter phenomenon, and its damping ratio has a certain effect on suppressing torsional vibration, which is consistent with the actual situation. When the inclination angle of photovoltaic panel is in the range of 0°-20°, the larger the inclination angle, the lower the critical wind speed of torsional vibration.
关键词
太阳能 /
光伏组件 /
风效应 /
流固耦合 /
扭转振动 /
阻尼
Key words
solar energy /
PV modules /
wind effects /
fluid-solid coupling /
torsional vibration /
damping
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CAIN J H, BANKS D, PETERSEN C P.Wind loads on utility scale solar PV power plants[C]//International Conference on Wind Engineering SEAOC Convention Proceedings. Seattle, WA, USA, 2015.
[2] GUHA T K, FEWLESS Y, BANKS D.Effect of panel tilt, row spacing, ground clearance and post-offset distance on the vortex induced dynamic loads on fixed tilt ground mount photovoltaic arrays[C]//14th International Conference on Wind Engineering. Porto Alegre, Brazil, 2015.
[3] MARTÍNEZ-GARCÍA E, BLANCO-MARIGORTA E, PARRONDO GAYO J, et al. Influence of inertia and aspect ratio on the torsional galloping of single-axis solar trackers[J]. Engineering structures, 2021, 243: 112682.
[4] VALENTÍN D, VALERO C, EGUSQUIZA M, et al. Failure investigation of a solar tracker due to wind-induced torsional galloping[J]. Engineering failure analysis, 2022, 135: 106137.
[5] 方媛, 何斌. 柔性绳索预拉力作用下太阳能光伏阵列流固耦合颤振特性仿真[C]//中国力学大会论文集(CCTAM 2019). 杭州, 中国, 2019.
FANG Y, HE B.Fluid-solid coupling flutter characteristics simulation of solar photovoltaic arrays under PRE-tensioning of flexible ropes[C]// Proceedings of the Chinese Mechanics Conference(CCTAM 2019).Hangzhou, China, 2019.
[6] 黄本才, 汪丛军. 结构抗风分析原理及应用[M]. 2版. 上海: 同济大学出版社, 2008.
HUANG B C, WANG C J.Principle and application of wind resistance analysis of structures[M]. 2nd ed. Shanghai: Tongji University Press, 2008.
[7] 张亚辉, 林家浩. 结构动力学基础[M]. 大连: 大连理工大学出版社, 2007.
ZHANG Y H, LIN J H.Fundamentals of structural dynamics[M]. Dalian: Dalian University of Technology Press, 2007.
[8] GB 50009—2012,建筑结构荷载规范[S].
GB 50009—2012,Load code for the design of building structures[S].
[9] 丛顺. 低矮建筑风沙效应的现场实测和风洞试验研究[D]. 长沙: 湖南大学, 2021.
CONG S.Field measurement and wind tunnel test on wind-sand effect of low-rise buildings[D]. Changsha: Hunan University, 2021.
[10] 张皓清. 大跨度钢箱梁悬索桥非线性气动力数值模拟及颤振研究[D]. 南京: 东南大学, 2018.
ZHANG H Q.Numerical study on nonlinear aerodynamic forces and flutter for long-span suspension bridges with steel-box girder[D]. Nanjing: Southeast University, 2018.
[11] 郑史雄, 郭俊峰, 朱进波, 等. П型断面主梁软颤振特性及抑制措施研究[J]. 西南交通大学学报, 2017, 52(3): 458-465.
ZHENG S X, GUO J F, ZHU J B, et al.Characteristics and suppression neasures for soft flutter of main girder with П-shaped cross section[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 458-465.
[12] 吉孔东. 结构阻尼对桥梁风振的影响及复合阻尼比的计算[D]. 西安: 长安大学, 2010.
JI K D.The influence of bridge' wind vibration caused by the damping and the calculation of the composite damping ratio[D]. Xi'an: Chang'an University, 2010.