EFFECT OF SHALLOW SEABED REINFORCE ON DYNAMIC PROPERTIES OF MONOPILE OFFSHORE WIND TURBINE FOUNDATION
Wang Haiyu1, Shen Kanmin1,2, He Rui3, Wang Kuanjun1,2
Author information+
1. PowerChina Huadong Engineering Corporation Limited, Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; 2. Zhejiang Engineering Research Center of Marine Geotechnical Investigation Technology and Equipment, Zhejiang Huadong Construction Engineering Corporation Limited, Hangzhou 310014, China; 3. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
A three-dimensional numerical finite element model for shallow soil reinforcement of monopile offshore wind turbine foundation is established to analyze the effects of different ranges and shapes, as well as the cumulative deformation and dynamic response of monopile foundations under cyclic loads of different amplitudes and directions. The results provide optimization suggestions for the application of reinforcement in soil reinforcement around monopiles. The results show that under different reinforcement conditions, the first-order natural frequency of the wind turbine changes significantly; after reinforcement, compared with unreinforced monopile foundations, the displacement, rotation angle and internal force response under cyclic loads of monopiles are all reduced, and the displacement at mudline can be reduced by up to 81%; the shear stress and shear strain of the soil around the pile are also reduced. As the number of cycles increases, the increase in shear strain decreases and the plastic zone of the soil becomes smaller.
Wang Haiyu, Shen Kanmin, He Rui, Wang Kuanjun.
EFFECT OF SHALLOW SEABED REINFORCE ON DYNAMIC PROPERTIES OF MONOPILE OFFSHORE WIND TURBINE FOUNDATION[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 607-618 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0236
中图分类号:
TM614
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 沈侃敏, 王宽君, 单治钢, 等. 吸力式桶形基础负压安装的渗流侵蚀过程研究[J]. 太阳能学报, 2022, 43(4): 380-386. SHEN K M, WANG K J, SHAN Z G, et al.Seepage induced erosion process of suction bucket foundations installation under negative pressure[J]. Acta energiae solaris sinica, 2022, 43(4): 380-386. [2] BHATTACHARYA S, NIKITAS N, GARNSEY J, et al.Observed dynamic soil-structure interaction in scale testing of offshore wind turbine foundations[J]. Soil dynamics and earthquake engineering, 2013, 54: 47-60. [3] NADINE A C.Cyclic lateral loading of monopile foundations in cohesionless soils[D]. Oxford: University of Oxford, 2015 [4] 姜贞强, 郇彩云, 王胜利, 等. 海上风电单桩基础动力特性识别及现场测试[J]. 太阳能学报, 2020, 41(7): 321-326. JIANG Z Q, HUAN C Y, WANG S L, et al.Dynamic characteristics identification of monopile offshore wind turbine and field tests[J]. Acta energiae solaris sinica, 2020, 41(7): 321-326. [5] 胡艳凯. 风机叶片结构设计及振动模态研究[J]. 长沙航空职业技术学院学报, 2020, 20(1): 74-80. HU Y K.Study on wind turbine blade structure design and vibration mode[J]. Journal of Changsha Aeronautical Vocational and Technical College, 2020, 20(1): 74-80. [6] 陈琛, 马宏旺, 李玉韬, 等. 冲刷对海上风电单桩基础自振频率影响的研究[J]. 振动与冲击, 2020, 39(22): 16-22. CHEN C, MA H W, LI Y T, et al.Effects of scour on the natural frequency of offshore wind turbine structures[J]. Journal of vibration and shock, 2020, 39(22): 16-22. [7] ZHU J L, YU J, HUANG M S, et al.Inclusion of small-strain stiffness in monotonic p-y curves for laterally loaded piles in clay[J]. Computers and geotechnics, 2022, 150: 104902. [8] HUANG M S, CUI H, SHI Z H, et al.Multi-directional T-EMSD-based p-y model for recent loading history effects on lateral response of short pile and caisson in undrained clays[J]. Ocean engineering, 2023, 267: 113279. [9] SHI Z H, LIU L, HUANG M S, et al.Simulation of cyclic laterally-loaded piles in undrained clays accounting for soil small-strain characteristics[J]. Ocean engineering, 2023, 267: 113268. [10] 张浦阳, 董宏季, 乐丛欢, 等. 海上风机嵌岩桩水平承载特性有限元分析[J]. 哈尔滨工程大学学报, 2021, 42(1): 132-138. ZHANG P Y, DONG H J, LE C H, et al.Finite element analysis of the horizontal load-bearing characteristics of offshore wind turbine rock-socketed piles[J]. Journal of Harbin Engineering University, 2021, 42(1): 132-138. [11] WANG P S, ZHANG P Y, HU W J, et al.Seismic response analysis of rock-socketed piles in Karst areas under vertical loads[J]. Applied sciences, 2023, 13(2): 784. [12] DET Norske Veritas.DNV-RP-F101. Corroded pipelines[S]. Elendom AS, 2015. [13] ZHU B, CHEN R P, GUO J F, et al.Large-scale modeling and theoretical investigation of lateral collisions on elevated piles[J]. Journal of geotechnical and geoenvironmental engineering, 2012, 138(4): 461-471. [14] CHEN R P, SUN Y X, ZHU B, et al.Lateral cyclic pile-soil interaction studies on a rigid model monopile[J]. Proceedings of the institution of civil engineers-geotechnical engineering, 2015, 168(2): 120-130. [15] ZHOU M Z, JENG D S, QI W G.A new model for wave-induced instantaneous liquefaction in a non-cohesive seabed with dynamic permeability[J]. Ocean engineering, 2020, 213: 107597 [16] LIN S S, LIAO J C.Permanent strains of piles in sand due to cyclic lateral loads[J]. Journal of geotechnical and geoenvironmental engineering, 1999, 125(9): 798-802. [17] MAYNE P W, KULHAWY F H, TRAUTMANN C H.Laboratory modeling of laterally-loaded drilled shafts in clay[J]. Journal of geotechnical engineering, 1995, 121(12): 827-835. [18] SHI Z H, LIU L, HUANG M S, et al.Simulation of cyclic laterally-loaded piles in undrained clays accounting for soil small-strain characteristics[J].Ocean engineering, 2023, 267:113268. [19] CUÉLLAR P, BAEßLER M, RÜCKER W. Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads[J]. Granular matter, 2009, 11(6): 379. [20] NICOLAI G, IBSEN L B.Variation in stiffness of monopiles in dense sand under cyclic lateral loads[J]. Journal of ocean and wind energy, 2016, 3(1): 31-36. [21] 孙永鑫, 刘海涛, 何春晖, 等. 循环荷载作用下粉土地基中刚性桩桩土相互作用研究[J]. 工业建筑, 2018, 48(11): 111-115, 181. SUN Y X, LIU H T, HE C H, et al.Research on pile-soil interaction of a rigid pile subjected to cyclic loading in silt foundation[J]. Industrial construction, 2018, 48(11): 111-115, 181. [22] 刘冰雪. 海上风机桩基础承载特性的三维有限元分析[D]. 大连: 大连理工大学, 2009. LIU B X.Three-dimensional finite element analysis of bearing characteristics of offshore wind turbine pile foundation[D]. Dalian: Dalian University of Technology, 2009. [23] KUO Y S, ACHMUS M, ABDEL-RAHMAN K.Minimum embedded length of cyclic horizontally loaded monopiles[J]. Journal of geotechnical and geoenvironmental engineering, 2012, 138(3): 357-363. [24] ZHU N, CUI L, LIU J W, et al.Discrete element simulation on the behavior of open-ended pipe pile under cyclic lateral loading[J]. Soil dynamics and earthquake engineering, 2021, 144: 106646. [25] 王宽君, 沈侃敏, 汪明元, 等. 黄海海域风电工程软弱海床强度CPTU原位解译方法[J]. 太阳能学报, 2023, 44(2): 99-108. WANG K J, SHEN K M, WANG M Y, et al.CPTU interpretation method of weak seabed strength of offshore wind power project in Yellow Sea area[J]. Acta energiae solaris sinica, 2023, 44(2): 99-108. [26] BRIAUD J L, TING F C K, CHEN H C, et al. SRICOS: prediction of scour rate in cohesive soils at bridge piers[J]. Journal of geotechnical and geoenvironmental engineering, 1999, 125(4): 237-246 [27] 田佩三. 动静荷载下冲刷对大直径单桩基础水平承载力的影响[D]. 武汉: 武汉理工大学, 2020. TIAN P S.Influence of scour on horizontal bearing capacity of large diameter single pile foundation under dynamic and static loads[D].Wuhan: Wuhan University of Technology, 2020. [28] MARTAKIS P, TAESERI D, CHATZI E, et al.A centrifuge-based experimental verification of soil-structure interaction effects[J]. Soil dynamics and earthquake engineering, 2017, 103: 1-14. [29] NI S H, HUANG Y H, LO K F.Numerical investigation of the scouring effect on the lateral response of piles in sand[J]. Journal of performance of constructed facilities, 2012, 26(3): 320-325. [30] QI W G, GAO F P.Physical modeling of local scour development around a large-diameter monopile in combined waves and current[J]. Coastal engineering, 2014, 83: 72-81. [31] TAFAROJNORUZ A, GAUDIO R, DEY S.Flow-altering countermeasures against scour at bridge piers: a review[J]. Journal of hydraulic research, 2010, 48(4): 441-452. [32] WHITEHOUSE R J S, HARRIS J M, SUTHERLAND J, et al. The nature of scour development and scour protection at offshore windfarm foundations[J]. Marine pollution bulletin, 2011, 62(1): 73-88. [33] 何奔. 软粘土地基单桩和复合桩基水平受荷性状[D]. 杭州: 浙江大学, 2016. HE B.Horizontal load behavior of single pile and composite pile foundation in soft clay foundation[D]. Hangzhou: Zhejiang University, 2016. [34] 张孟环. 劲性复合桩的水平承载特性及其实用计算方法[D]. 南京: 东南大学, 2019. ZHANG M H.Horizontal bearing characteristics of rigid composite pile and its practical calculation method[D]. Nanjing: Southeast University, 2019. [35] TAO J L, LI J H, WANG X R, et al.Nature-inspired bridge scour countermeasures: streamlining and biocementation[J]. Journal of testing and evaluation, 2018, 46(4): 20170517. [36] LIN H, SULEIMAN M T, JABBOUR H M, et al.Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting[J]. Journal of geotechnical and geoenvironmental engineering, 2016, 142(10): 04016045. [37] LIN H, SULEIMAN M T, JABBOUR H M, et al.Bio-grouting to enhance xial pull-out response of pervious concrete ground improvement piles[J]. Canadian geotechnical journal, 2018, 55(1): 119-130. [38] 文锋. 我国海上风电现状及分析[J]. 新能源进展, 2016, 4(2): 152-158. WEN F.Developments and characteristics of offshore wind farms in China[J]. Advances in new and renewable energy, 2016, 4(2): 152-158. [39] 孙伟民. 基于Opensees的桩基横向动力特性数值模拟研究[D]. 天津: 河北工业大学, 2015. SUN W M.The study on numerical simulationof pile lateral dynamic characteristics base on opensees[D].Tianjin: Hebei University of Technology, 2015. [40] ELGAMAL A, YANG Z H, PARRA E, et al.Modeling of cyclic mobility in saturated cohesionless soils[J].International Journal of Plasticity, 2003, 19(6):883-905. [41] LEBLANC C, HOULSBY G T, BYRNE B W.Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90.