海上风电机组安装主要包括多船舶联合施工、单船自运输安装施工两种方式。海上风电场建设中,风电机组安装施工费用占有较大比重,进行整体施工规划分析可以为宏观决策提供量化依据。鉴于此,采用离散数值分析模拟技术,以实际工程项目施工限制条件和风浪流数据为计算参数,对项目总工期和怠机时长等进行数值模拟,以比较上述两种模式的施工效率优劣。结果表明,相对航行距离在359.26 km前,单船模式施工累计耗时高于多船模式,超过该距离后,多船模式逐渐高于单船模式;多船模式怠机抵抗性能整体上优于单船模式。
Abstract
The installation of offshore wind turbines relies on the multi-vessel construction method and the single-vessel mode. Given the high capital investment cost of offshore wind turbines, construction planning analysis is crucial to make informed decisions. As a result,quantitative analysis on the efficiency of the above two modes is necessary. In this study, the discrete number analysis simulation technology is used to compare the efficiency of the two construction modes. The actual project construction restrictions and metocean data are used as calculation parameters to simulate the total project duration and delay time. The results show that the accumulative construction time of the single-vessel mode is higher than that of the multi-vessel mode before the relative sailing distance of 359.26 km,beyond which the multi-vessel mode becomes more efficient. Furthermore, the multi-vessel mode generally exhibits better anti-delay performance than the single-vessel mode.
关键词
计算机模拟 /
海上风电机组 /
施工设备 /
整体施工规划 /
船机利用率
Key words
computer simulation /
offshore wind turbines /
construction equipment /
aggregate installation planning /
vessel utilization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DECASTRO M, SALVADOR S, GÓMEZ-GESTEIRA M, et al. Europe, China and the United States: three different approaches to the development of offshore wind energy[J]. Renewable and sustainable energy reviews, 2019, 109: 55-70.
[2] MUSIAL W, SPITSEN P, DUFFY P, et al. Offshore Wind market report:2022 edition[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2022.
[3] 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N]. 北京: 人民日报, 2021-03-13(001).
The 14th five-year plan for national economic and social development of the People's Republic of China and the outline of the long-range goals to2035[N]. People's Daily, 2021-03-13(001).
[4] VIRTANEN E A, LAPPALAINEN J, NURMI M, et al.Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design[J]. Renewable and sustainable energy reviews, 2022, 158: 112087.
[5] CASTRO S L, FILGUEIRA V A, CARRAL C L, et al.Economic feasibility of floating offshore wind farms[J]. Energy, 2016, 112: 868-882.
[6] VAZQUEZ A, IGLESIAS G.Grid parity in tidal stream energy projects: an assessment of financial, technological and economic LCOE input parameters[J]. Technological forecasting and social change, 2016, 104: 89-101.
[7] 元国凯, 李耀能, 卢钦先, 等. 以设计为龙头的海上风电工程总承包项目管理研究[J]. 南方能源建设, 2022, 9(1): 1-8.
YUAN G K, LI Y N, LU Q X, et al.Research on design-led EPC project management of offshore wind power project[J]. Southern energy construction, 2022, 9(1): 1-8.
[8] ASHURI T, ZAAIJER M B, MARTINS J R R A, et al. Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy[J]. Renewable energy, 2014, 68: 893-905.
[9] SHIELDS M, BEITER P, NUNEMAKER J, et al.Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind[J]. Applied energy, 2021, 298: 117189.
[10] WU X N, HU Y, LI Y, et al.Foundations of offshore wind turbines: a review[J]. Renewable and sustainable energy reviews, 2019, 104: 379-393.
[11] ZHAI Y, XU C, ZHAO H, et al. Dynamic analysis of an integrated floating structure consisting of a barge offshore wind turbine with an aquaculture cage[C]//The 32nd International Ocean and Polar Engineering Conference. OnePetro, 2022: ISOPE-I-22-047.
[12] 信达证券. 风力发电成本结构拆分[R]. 2021.
CINDA Securities,Wind power cost structure breakdown [R]. 2021.
[13] AHN D, SHIN S, KIM S, et al.Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(1): 45-54.
[14] URAZ E.Offshore wind turbine transportation & installation analyses planning optimal marine operations for offshore wind projects[D]. Cotlang sweden: Gotland University, 2011.
[15] TYAPIN I, HOVLAND G, JORDE J, Comparison of Markov theory and Monte Carlo simulations for analysis of marine operations related to installation of an offshore wind turbine[C]//The 24th International Congress on Condition Monitoring (COMADEM), Stavanger, Norway,2011: 1071-1081.
[16] SCHOLZ R B, LÜtjen M, HEGER J, et al.Planning and control of logistics for offshore wind farms[C]//Proceedings of the 12th WSEAS International Conference on Mathematical and Computational Methods In Science and Engineering. Hangzhou, China, 2010: 242-247.
[17] LÜTJEN M, KARIMI H R. Approach of a port inventory control system for the offshore installation of wind turbines[C]//ISOPE International Ocean and Polar Engineering Conference. Isope, 2012: ISOPE-I-12-142.
[18] AIT A A, QUANDT M, LÜtjen M.Aggregate installation planning of offshore wind farms[C]//Proceedings of the 7th International Conference on Communications and Information Technology. Rhodes Island, Greece, 2013.
[19] GINTAUTAS T, SØRENSEN J. Improved methodology of weather window prediction for offshore operations based on probabilities of operation failure[J]. Journal of marine science and engineering, 2017, 5(2): 20.
[20] VENKITACHALAM G A.Modelling the installation of offshore wind farms: defining the installation of offshore wind submarine power cables using a discrete event simulation based logistics model[D]. Delft: Delft University of Technology, 2020.
基金
中国船舶集团风电发展有限公司自立科研项目(YY2022-003)