基于实例迁移学习的小样本光伏功率短期预测

王晓霞, 艾兴成, 王涛

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 325-333.

PDF(1909 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1909 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 325-333. DOI: 10.19912/j.0254-0096.tynxb.2023-0241

基于实例迁移学习的小样本光伏功率短期预测

  • 王晓霞1,2, 艾兴成1, 王涛3
作者信息 +

FEW-SHOT PHOTOVOLTAIC POWER SHORT-TERM FORECASTING BASED ON INSTANCE TRANSFER LEARNING

  • Wang Xiaoxia1,2, Ai Xingcheng1, Wang Tao3
Author information +
文章历史 +

摘要

针对新建光伏电站历史数据匮乏导致功率预测精度不足的问题,提出一种基于实例迁移学习的小样本光伏发电功率短期预测方法。首先,以一组丰富的长期运行光伏数据为源域,利用多核最大均值差异估计源域与目标域光伏数据的匹配相似性,筛选出高相似的迁移源域;然后,建立加权对抗双向长短期记忆网络,通过对抗学习赋予源域光伏样本权重以调整其数据分布,将调整后的源域数据充实目标域数据集,采用双向长短期记忆网络挖掘公共知识域中光伏发电功率序列与气象数据的双向时序关联特性,实现小样本条件下光伏功率的精准预测。结果表明:相较于传统深度学习和模型迁移方法,所提方法能有效提高历史数据有限条件下光伏功率的预测精度。

Abstract

To address the problem that the prediction accuracy of photovoltaic power is insufficient due to the lack of historical data of newly-built photovoltaic power stations, an instance transfer learning-based short-term prediction method is proposed for few-shot photovoltaic power generation. Firstly, a set of rich long-term operation photovoltaic data is used as the source domain, and then the multi-kernel maximum mean discrepancy was employed to estimate the matching similarity of photovoltaic data between source domain and target domain, and the migration source domain with high similarity was screened out. Then, a weighted adversarial bi-directional long-short time memory network was established. The photovoltaic samples in the source domain were weighted to adjust their data distribution by adversarial learning, and the adjusted source domain data was enriched to the target domain dataset. The bi-directional long-short time memory network was used to mine the bi-directional time sequence correlation of photovoltaic power sequence and meteorological data in the public knowledge domain, so as to achieve accurate prediction of few-shot photovoltaic power. The results show that the proposed method can effectively improve the prediction accuracy of photovoltaic power under the limited historical data compared with the traditional deep learning and model transfer methods.

关键词

光伏发电 / 预测 / 深度学习 / 迁移学习 / 双向长短期记忆网络

Key words

photovoltaic power / forecasting / deep learning / transfer learning / bi-directional long-short time memory network

引用本文

导出引用
王晓霞, 艾兴成, 王涛. 基于实例迁移学习的小样本光伏功率短期预测[J]. 太阳能学报. 2024, 45(6): 325-333 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0241
Wang Xiaoxia, Ai Xingcheng, Wang Tao. FEW-SHOT PHOTOVOLTAIC POWER SHORT-TERM FORECASTING BASED ON INSTANCE TRANSFER LEARNING[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 325-333 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0241
中图分类号: TM615   

参考文献

[1] 国家能源局. 2021年光伏发电建设运行情况[DB/OL]. http://www.nea.gov.cn/2022-03/09/c_1310508114.htm.
National Energy Administration. Construction and operation of photovoltaic power generation in2021[DB/OL]. http://www.nea.gov.cn/2022-03/09/c_1310508114.htm.
[2] 张汀荟, 谢明成, 王蓓蓓, 等. 分布式光伏的共享价值及其对配电网影响的系统动力学仿真[J]. 电力系统自动化, 2021, 45(18): 35-44.
ZHANG T H, XIE M C, WANG B B, et al.System dynamics simulation of shared value of distributed photovoltaic and its impact on distribution network[J]. Automation of electric power systems, 2021, 45(18): 35-44.
[3] 王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46(11): 67-74.
WANG B, LYU Y, CHEN Z, et al.Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of electric power systems, 2022, 46(11): 67-74.
[4] LI Y T, SU Y, SHU L J.An ARMAX model for forecasting the power output of a grid connected photovoltaic system[J]. Renewable energy, 2014, 66: 78-89.
[5] 成珂, 孙琦琦, 马晓瑶. 基于主成分回归分析的气象因子对光伏发电量的影响[J]. 太阳能学报, 2021, 42(2): 403-409.
CHENG K, SUN Q Q, MA X Y.Influence of meteorological factors on photovoltaic power generation based on principal component regression analysis[J]. Acta energiae solaris sinica, 2021, 42(2): 403-409.
[6] 殷豪, 陈云龙, 孟安波, 等. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报, 2019, 40(7): 1866-1873.
YIN H, CHEN Y L, MENG A B, et al.Forecasting photovoltaic power based on quadric self-adaptive SVM model[J]. Acta energiae solaris sinica, 2019, 40(7): 1866-1873.
[7] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[8] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[9] HUANG C J, KUO P H.Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting[J]. IEEE access, 2019, 7: 74822-74834.
[10] ZHOU H X, ZHANG Y J, YANG L F, et al.Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism[J]. IEEE access, 2019, 7: 78063-78074.
[11] ZHEN H, NIU D X, WANG K K, et al.Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information[J]. Energy, 2021, 231: 120908.
[12] SHARADGA H, HAJIMIRZA S, BALOG R S.Time series forecasting of solar power generation for large-scale photovoltaic plants[J]. Renewable energy, 2020, 150: 797-807.
[13] ZHOU S Y, ZHOU L, MAO M X, et al.Transfer learning for photovoltaic power forecasting with long short-term memory neural network[C]//2020 IEEE International Conference on Big Data and Smart Computing(BigComp). Busan, Korea, 2020: 125-132.
[14] LUO X, ZHANG D X, ZHU X.Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants[J]. Renewable energy, 2022, 185: 1062-1077.
[15] 史凯钰, 张东霞, 韩肖清, 等. 基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J]. 电网技术, 2022, 46(4): 1363-1372.
SHI K Y, ZHANG D X, HAN X Q, et al.Digital twin model of photovoltaic power generation prediction based on LSTM and transfer learning[J]. Power system technology, 2022, 46(4): 1363-1372.
[16] 张童彦, 廖清芬, 唐飞, 等. 基于气象资源插值与迁移学习的广域分布式光伏功率预测方法[J]. 中国电机工程学报, 2023, 43(20): 7929-7940.
ZHANG T Y, LIAO Q F, TANG F, et al.Wide-area distributed photovoltaic power forecast method based on meteorological resource interpolation and transfer learning[J]. Proceedings of the CSEE, 2023, 43(20): 7929-7940.
[17] 秦玉峰, 史贤俊. 基于MMD的故障可诊断性定量评价方法[J]. 控制与决策, 2023, 38(10): 2925-2933.
QIN Y F, SHI X J.Quantitative evaluation approach of fault diagnosability based on maximum mean discrepancy[J]. Control and decision, 2023, 38(10): 2925-2933.
[18] DE MATHELIN A, RICHARD G, DEHEEGER F, et al.Adversarial weighting for domain adaptation in regression[C]//2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). Washington, DC, USA, 2021: 49-56.
[19] LU Y K, TIAN Z, ZHOU R Y, et al.A general transfer learning-based framework for thermal load prediction in regional energy system[J]. Energy, 2021, 217: 119322.

基金

国网河北省电力有限公司科技项目(KJCB2021-003)

PDF(1909 KB)

Accesses

Citation

Detail

段落导航
相关文章

/