管式PECVD制备原位掺杂多晶硅的性能研究

黄嘉斌, 赵增超, 李明, 陈俊, 邓新新, 周小荣

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 334-340.

PDF(2524 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2524 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 334-340. DOI: 10.19912/j.0254-0096.tynxb.2023-0251

管式PECVD制备原位掺杂多晶硅的性能研究

  • 黄嘉斌, 赵增超, 李明, 陈俊, 邓新新, 周小荣
作者信息 +

STUDY ON PERFORMANCE OF IN-SITU DOPED POLYSILICON PREPARED BY TUBE PECVD

  • Huang Jiabin, Zhao Zengchao, Li Ming, Chen Jun, Deng Xinxin, Zhou Xiaorong
Author information +
文章历史 +

摘要

报道了管式等离子体增强化学气相沉积(PECVD)的各项沉积参数对硅太阳电池重掺杂多晶硅钝化接触(SiOx/Poly-Si(n+))的影响。TOPCon太阳电池的掺杂多晶硅是通过对沉积的非晶硅高温晶化来实现的,通过改变PECVD的沉积温度、Ar和PH3的流量、沉积功率等沉积参数,可获得不同厚度、结晶度和掺杂浓度的掺杂非晶硅(a-Si(n+))薄膜,然后通过高温退火得到不同的Poly-Si(n+)薄膜,从而导致SiOx/Poly-Si(n+)钝化接触在钝化质量和载流子选择性等方面的不同特性。最后在沉积温度480 ℃、Ar流量8 L/min、PH3流量0.8 L/min、沉积功率12000 W、退火温度920 ℃的条件下获得最佳双面SiOx/Poly-Si(n+)/SiNx钝化接触,少子寿命达到6445 μs,隐含开路电压(iVoc)达到742.7 mV以上,单面饱和电流密度J0低至4.2 fA/cm2

Abstract

The effects of deposition parameters of tube plasma enhanced chemical vapor deposition (PECVD) on the heavily doped polysilicon passivated contact (SiOx/Poly-Si(n+)) of silicon solar cells are reported. The doped polysilicon of TOPCon solar cells is achieved by high temperature crystallization of deposited amorphous silicon. a-Si (n+) films with different thickness, crystallinity and doping concentration can be obtained by changing the deposition temperature, the flow rate of Ar and PH3, deposition RF power and other deposition parameters of PECVD. Then different Poly-Si(n+) films are obtained by annealing at high temperature, resulting in different characteristics of SiOx/Poly-Si(n+) passivated contact in terms of passivating quality and carrier selectivity. Finally, under the deposition temperature of 480 °C, Ar flow rate of 8 L/min, PH3 flow rate of 0.8 L/min, deposition RF power of 12000 W, annealing temperature of 920℃, the optimal double-side SiOx/Poly-Si(n+)/SiNx passivated contact is obtained. The minority lifetime reaches to 6445 μs, the implied open circuit voltage (iVoc) reaches to 742.7 mV, and the single-side saturation current density J0 is as low as 4.2 fA/cm2.

关键词

硅基太阳电池 / 钝化 / 多晶硅 / 掺杂 / 等离子增强化学气相沉积

Key words

silicon solar cells / passivation / polycrystalline silicon / doping / plasma enhanced chemical vapor deposition

引用本文

导出引用
黄嘉斌, 赵增超, 李明, 陈俊, 邓新新, 周小荣. 管式PECVD制备原位掺杂多晶硅的性能研究[J]. 太阳能学报. 2024, 45(6): 334-340 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0251
Huang Jiabin, Zhao Zengchao, Li Ming, Chen Jun, Deng Xinxin, Zhou Xiaorong. STUDY ON PERFORMANCE OF IN-SITU DOPED POLYSILICON PREPARED BY TUBE PECVD[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 334-340 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0251
中图分类号: TM914.4   

参考文献

[1] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[2] FELDMANN F, BIVOUR M, REICHEL C, et al.Tunnel oxide passivated contacts as an alternative to partial rear contacts[J]. Solar energy materials and solar cells, 2014, 131: 46-50.
[3] RÖMER U, PEIBST R, OHRDES T, et al. Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions[J]. Solar energy materials and solar cells, 2014, 131: 85-91.
[4] RICHTER A, BENICK J, FELDMANN F.Silicon solar cells with full-area passivated rear contacts: influence of wafer resistivity on device performance on a 25% efficiency level[C]//26th International Photovoltaic Science & Engineering Conference(PVSEC-26). Singapore, 2016.
[5] HAASE F, SCHAFER S, KLAMT C, et al.Perimeter recombination in 25%-efficient IBC solar cells with passivating POLO contacts for both polarities[J]. IEEE journal of photovoltaics, 2018, 8(1): 23-29.
[6] RICHTER A, MÜLLER R, BENICK J, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses[J]. Nature energy, 2021, 6: 429-438.
[7] HAASE F, HOLLEMANN C, SCHÄFER S, et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells[J]. Solar energy materials and solar cells, 2018, 186: 184-193.
[8] VAN DER VOSSEN R, FELDMANN F, MOLDOVAN A, et al. Comparative study of differently grown tunnel oxides for p-type passivating contacts[J]. Energy procedia, 2017, 124: 448-454.
[9] YAN D, CUEVAS A, BULLOCK J, et al.Phosphorus-diffused polysilicon contacts for solar cells[J]. Solar energy materials and solar cells, 2015, 142: 75-82.
[10] GUO X Q, LIAO M D, RUI Z, et al.Comparison of different types of interfacial oxides on hole-selective p+-poly-Si passivated contacts for high-efficiency c-Si solar cells[J]. Solar energy materials and solar cells, 2020, 210: 110487.
[11] 吕欣, 林涛, 董鹏. 背表面掺杂对n型TOPCon电池特性的影响研究[J]. 太阳能学报, 2021, 42(11): 41-45.
LYU X, LIN T, DONG P.Study on the influence of back surface doping on the characteristics of n-type TOPCon battery[J]. Acta energiae solaris sinica, 2021, 42(11): 41-45.
[12] MASUDA A, YONEZAWA Y, MORIMOTO A, et al.Ultrathin SiO2 films on Si formed by N2O-plasma oxidation technique[J]. Applied surface science, 1994, 81(3): 277-280.
[13] KIM H, BAE S, JI K S, et al.Passivation properties of tunnel oxide layer in passivated contact silicon solar cells[J]. Applied surface science, 2017, 409: 140-148.
[14] HUANG Y Q, LIAO M D, WANG Z X, et al.Ultrathin silicon oxide prepared by in-line plasma-assisted N2O oxidation (PANO) and the application for n-type polysilicon passivated contact[J]. Solar energy materials and solar cells, 2020, 208: 110389.
[15] GAO T, YANG Q, GUO X Q, et al.An industrially viable TOPCon structure with both ultra-thin SiOx and n+-poly-Si processed by PECVD for p-type c-Si solar cells[J]. Solar energy materials and solar cells, 2019, 200: 109926.
[16] SMITH J E, BRODSKY M H, CROWDER B L, et al.Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors[J]. Physical review letters, 1971, 26(11): 642-646.
[17] LI Z, LI W, JIANG Y D, et al.Raman characterization of the structural evolution in amorphous and partially nanocrystalline hydrogenated silicon thin films prepared by PECVD[J]. Journal of Raman spectroscopy, 2011, 42(3): 415-421.
[18] AVRAMI M.Granulation, phase change, and microstructure kinetics of phase change. Ⅲ[J]. The journal of chemical physics, 1941, 9(2): 177-184.
[19] CHEN W H, TRUONG T N, NGUYEN H T, et al.Influence of PECVD deposition temperature on phosphorus doped poly-silicon passivating contacts[J]. Solar energy materials and solar cells, 2020, 206: 110348.
[20] WADA Y, NISHIMATSU S.Grain growth mechanism of heavily phosphorus-implanted polycrystalline silicon[J]. Journal of the electrochemical society, 1978, 125(9): 1499.
[21] NEMETH B, YOUNG D L, PAGE M R, et al.Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells[J]. Journal of materials research, 2016, 31(6): 671-681.
[22] NOGAY G, STUCKELBERGER J, WYSS P, et al.Interplay of annealing temperature and doping in hole selective rear contacts based on silicon-rich silicon-carbide thin films[J]. Solar energy materials and solar cells, 2017, 173: 18-24.
[23] EDELMAN F, CHACK A, WEIL R, et al.Structure of PECVD Si: H films for solar cell applications[J]. Solar energy materials and solar cells, 2003, 77(2): 125-143.
[24] ROBERTSON J.Deposition mechanism of hydrogenated amorphous silicon[J]. Journal of applied physics, 2000, 87(5): 2608-2617.
[25] VON KEUDELL A, ABELSON J R.Direct insertion of SiH3 radicals into strained Si-Si surface bonds during plasma deposition of hydrogenated amorphous silicon films[J]. Physical review B, 1999, 59(8): 5791-5798.
[26] MATSUDA A. Formation kinetics and control of microcrystallite in μc-Si: H from glow discharge plasma[J]. Journal of non-crystalline solids, 1983, 59/60: 767-774.
[27] ROBERTSON J, POWELL M J.Deposition, defect and weak bond formation processes in a-Si:H[J]. Thin solid films, 1999, 337(1/2): 32-36.

PDF(2524 KB)

Accesses

Citation

Detail

段落导航
相关文章

/