用于振荡水柱波浪发电系统的高效永磁发电机仿真分析与试验验证

黄铭冶, 彭爱武, 连广坤, 陈彪, 张庆贺, 刘艳娇

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 37-43.

PDF(3731 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3731 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 37-43. DOI: 10.19912/j.0254-0096.tynxb.2023-0252

用于振荡水柱波浪发电系统的高效永磁发电机仿真分析与试验验证

  • 黄铭冶1,2, 彭爱武1,2, 连广坤1, 陈彪1, 张庆贺1, 刘艳娇1
作者信息 +

SIMULATION ANALYSIS AND EXPERIMENTAL VERFICATION OF HIGH-EFFCIENCY PERMANENT MAGNET GENERATOR FOR OSCILLATING WATER COLUMN WAVE POWER GENERATION SYSTEM

  • Huang Mingye1,2, Peng Aiwu1,2, Lian Guangkun1, Chen Biao1, Zhang Qinghe1, Liu Yanjiao1
Author information +
文章历史 +

摘要

针对空气透平的运行特性及系统在宽转速和宽功率范围高效运行的要求,初步设计内置式永磁同步发电机关键参数,建立其二维有限元模型并进行优化。根据有限元优化后的电机尺寸,完成样机研制并分析测试其主要电磁性能。仿真分析和测试结果证明样机适合用于振荡水柱波浪能发电系统。

Abstract

In order to meet the requirements of efficient operation over a wide speed and power range based on the operating characteristics of the air turbine, the key parameters of an interior permanent magnet synchronous generator are preliminarily designed, and its 2D finite element model is established and optimized. Based on the optimized motor size from finite element optimization, a prototype is developed and its main electromagnetic performance is analyzed and tested. Simulation analysis and test results prove that the prototype is suitable for oscillating water column wave energy generation system.

关键词

波浪能 / 永磁同步发电机 / 有限元 / 振荡水柱 / 高效率

Key words

wave energy / permanent magnet synchronous generator / finite element / oscillating water column / high efficiency

引用本文

导出引用
黄铭冶, 彭爱武, 连广坤, 陈彪, 张庆贺, 刘艳娇. 用于振荡水柱波浪发电系统的高效永磁发电机仿真分析与试验验证[J]. 太阳能学报. 2024, 45(6): 37-43 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0252
Huang Mingye, Peng Aiwu, Lian Guangkun, Chen Biao, Zhang Qinghe, Liu Yanjiao. SIMULATION ANALYSIS AND EXPERIMENTAL VERFICATION OF HIGH-EFFCIENCY PERMANENT MAGNET GENERATOR FOR OSCILLATING WATER COLUMN WAVE POWER GENERATION SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 37-43 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0252
中图分类号: TM619   

参考文献

[1] DE O FALCÃO A F. Wave energy utilization: a review of the technologies[J]. Renewable and sustainable energy reviews, 2010, 14(3): 899-918.
[2] 王辰. 振荡水柱式波能转换装置的未来与发展[J]. 船舶工程, 2020, 42(8): 14-19.
WANG C.Future and development of oscillating water column wave energy conversion device[J]. Ship engineering, 2020, 42(8): 14-19.
[3] FALCÃO A F O, HENRIQUES J C C. Oscillating-water-column wave energy converters and air turbines: a review[J]. Renewable energy, 2016, 85: 1391-1424.
[4] 陈加菁. 第一台商业性的波力发电站建成(每度电价人民币0.75元)[J]. 海洋工程, 1995, 13(3): 95.
CHEN J J.The first commercial wave power station was built (0.75 Yuan per kilowatt hour)[J]. The ocean engineering, 1995, 13(3): 95.
[5] HEALTH T,WHITTAKER T J T,BOAKE C B. The design, construction and operation of the LIMPET wave energy converter[C]//Proceedings of 4th European Wave Energy Conference. Rome, Italy, IEEE Press, 2000: 49-55.
[6] GOMES R P F, HENRIQUES J C C, GATO L M C, et al. Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion[J]. Renewable energy, 2012, 44: 328-339.
[7] ZHANG D H, LI W, LIN Y G.Wave energy in China: current status and perspectives[J]. Renewable energy, 2009, 34(10): 2089-2092.
[8] 余志, 蒋念东, 游亚戈. 大万山岸式振荡水柱波力电站的输出功率[J]. 海洋工程, 1996, 14(2): 78-83.
YU Z, JIANG N D, YOU Y G.Output power of dawanshan shore oscillating water column wave power station[J]. The ocean engineering, 1996, 14(2): 78-83.
[9] 李猛, 吴必军, 伍儒康, 等. 前方后尖浮舱五边形后弯管水槽性能实验研究[J]. 太阳能学报, 2019, 40(12): 3339-3347.
LI M, WU B J, WU R K, et al.Experimental study on performance of pentagonal backward bent duct buoy with buoyancy tank square in front and triangular in back in 2d wave tank[J]. Acta energiae solaris sinica, 2019, 40(12): 3339-3347.
[10] 龙正翔, 吴必军, 李猛. 锥形中心管波浪能量转换模型试验研究及样机设计[J]. 太阳能学报, 2020, 41(12): 365-371.
LONG Z X, WU B J, LI M.Model test and prototype design of conical center-pipe buoy on wave energy conversion[J]. Acta energiae solaris sinica, 2020, 41(12): 365-371.
[11] 伍儒康, 吴必军. 基于平面叶栅模型CFD数据的Wells透平设计方法[J]. 太阳能学报, 2020, 41(4): 137-144.
WU R K, WU B J.Design method of Wells turbine based on CFD results of plane cascade model[J]. Acta energiae solaris sinica, 2020, 41(4): 137-144.
[12] LIU Z, XU C L, KIM K, et al.Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves[J]. Energy, 2022, 250: 123779.
[13] WANG C,ZHANG Y L,DENG Z Z. A novel dual-chamber oscillating water column system with dual lip-wall pitching motions for wave energy conversion[J]. Energy,2022,246: 123319.1-123319.14.
[14] JAYASHANKAR V, UDAYAKUMAR K, KARTHIKEYAN B, et al.Maximizing power output from a wave energy plant[C]//2000 IEEE Power Engineering Society Winter Meeting, Singapore, 2002: 1796-1801.
[15] KIRAN D R, PALANI A, MUTHUKUMAR S, et al.Steady grid power from wave energy[J]. IEEE transactions on energy conversion, 2007, 22(2): 539-540.
[16] CEBALLOS S, REA J, ROBLES E, et al.Control strategies for combining local energy storage with wells turbine oscillating water column devices[J]. Renewable energy, 2015, 83: 1097-1109.
[17] 徐松, 黄元峰, 马鹏飞, 等. 轮缘驱动潮流能发电机关键参数设计分析及运行特性研究[J]. 中国电机工程学报, 2019, 39(8): 2449-2459, 27.
XU S, HUANG Y F, MA P F, et al.Key parameter design and operation characteristic research of rim-driven marine current generators[J]. Proceedings of the CSEE, 2019, 39(8): 2449-2459, 27.
[18] 陈世坤. 电机设计[M]. 北京: 机械工业出版, 2004.
CHEN S K.Design of machines[M]. Beijing: China Machine Press,2004.
[19] 王秀和. 永磁电机[M]. 北京: 中国电力出版社, 2007.
WANG X H.Permanent magnet motor[M]. Beijing: China Electric Power Press, 2007.
[20] 狄冲, 鲍晓华, 潘晋, 等. 基于Elmer开源有限元平台的铁氧体辅助同步磁阻电机的建模和分析[J]. 电工技术学报, 2022, 37(5): 1136-1144.
DI C, BAO X H, PAN J, et al.Modelling and analysis of a ferrite assisted synchronous reluctance machine based on the open-source platform Elmer[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1136-1144.
[21] 杨巧玲, 包广清, 刘美钧, 等. 一种用于太阳能热发电系统的磁场调制直线发电机[J]. 太阳能学报, 2021, 42(12): 93-98.
YANG Q L, BAO G Q, LIU M J, et al.Permanent magnet linear generator with field modulation for solar thermal power generation system[J]. Acta energiae solaris sinica, 2021, 42(12): 93-98.

基金

国家海洋可再生能源专项资金(GHME2018SF02); 国家自然科学基金联合基金(U20A20106)

PDF(3731 KB)

Accesses

Citation

Detail

段落导航
相关文章

/