基于光热木材的海水淡化研究进展与展望

吕霈泓, 李娟, 石雷, 马晨波, 曹耀文

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 401-411.

PDF(4810 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4810 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 401-411. DOI: 10.19912/j.0254-0096.tynxb.2023-0254

基于光热木材的海水淡化研究进展与展望

  • 吕霈泓1, 李娟1, 石雷2, 马晨波1, 曹耀文1
作者信息 +

RESEARCH PROGRESS AND PROSPECT OF SEAWATER DESALINATION BASED ON PHOTOTHERMAL WOOD

  • Lyu Peihong1, Li Juan1, Shi Lei2, Ma Chenbo1, Cao Yaowen1
Author information +
文章历史 +

摘要

概述等离子体材料、半导体材料、碳基材料和复合材料等光热材料的光热转换机理与性能特点;重点分析碳基光热材料的研究现状与发展优势,针对炭化光热木材和复合光热木材,整理并比较两者的制备方法与蒸发性能;基于光热木材海水淡化系统,综述太阳能蒸发器强化界面传热传质策略与系统结构优化、系统经济性与稳定性等方面的相关研究,最后总结光热木材海水淡化目前的技术缺陷,展望未来的研究方向。

Abstract

In this paper, the photothermal conversion mechanism and performance characteristics of plasma materials, semiconductor materials, carbon-based materials and composite materials are summarized. The research status and development advantages of carbon-based photothermal materials are emphatically analyzed, the preparation methods and evaporation properties of carbonized photothermal wood and composite photothermal wood are sorted out and compared. Based on the structure of the photothermal wood desalination system, this paper summarizes the optimization strategies of heat and mass transfer in the evaporation process and relevant research on the structure and optimization, economy and stability of the solar evaporator and the overall system, and finally reviews the current technical defects of the photothermal wood desalination system, and looks forward to the future research direction.

关键词

海水淡化 / 太阳能蒸发器 / 木材 / 界面蒸发 / 光热效应

Key words

desalination / solar evaporator / wood / interface evaporation / photothermal effect

引用本文

导出引用
吕霈泓, 李娟, 石雷, 马晨波, 曹耀文. 基于光热木材的海水淡化研究进展与展望[J]. 太阳能学报. 2024, 45(6): 401-411 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0254
Lyu Peihong, Li Juan, Shi Lei, Ma Chenbo, Cao Yaowen. RESEARCH PROGRESS AND PROSPECT OF SEAWATER DESALINATION BASED ON PHOTOTHERMAL WOOD[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 401-411 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0254
中图分类号: TK519   

参考文献

[1] ZHENG Z M, LI H Y, ZHANG X D, et al.High-absorption solar steam device comprising Au@Bi2MoO6-CDs: extraordinary desalination and electricity generation[J]. Nano energy, 2020, 68: 104298.
[2] JONES E, QADIR M, VAN VLIET M T H, et al. The state of desalination and brine production: a global outlook[J]. Science of the total environment, 2019, 657: 1343-1356.
[3] 孔慧, 杨锦蕊, 陈靖, 等. 太阳能热法海水淡化发展的关键路径[J]. 太阳能学报, 2023, 44(4): 479-486.
KONG H, YANG J R, CHEN J, et al.Critical path for development of solar thermal seawater desalination[J]. Acta energiae solaris sinica, 2023, 44(4): 479-486.
[4] 常泽辉, 刘雪东, 李海洋, 等. 不同特征尺寸管式降膜太阳能海水蒸馏器热性能分析[J]. 太阳能学报, 2021, 42(8): 295-301.
CHANG Z H, LIU X D, LI H Y, et al.Thermal performance analysis of tubular falling film solar seawater distillation distiller with different characteristic sizes[J]. Acta energiae solaris sinica, 2021, 42(8): 295-301.
[5] DE LA CALLE A, BONILLA J, ROCA L, et al. Dynamic modeling and simulation of a solar-assisted multi-effect distillation plant[J]. Desalination, 2015, 357: 65-76.
[6] 吴琳, 王军, 范奇, 等. 基于生物质碳的界面光热蒸发实验研究[J]. 太阳能学报, 2022, 43(11): 106-111.
WU L, WANG J, FAN Q, et al.Experimental study on interfacial photothermal evaporation based on biomass carbon[J]. Acta energiae solaris sinica, 2022, 43(11): 106-111.
[7] 凌童, 段慧玲, 闫煜杰, 等. 太阳能界面蒸发的应用综述[J]. 分布式能源, 2021, 6(3): 1-9.
LING T, DUAN H L, YAN Y J, et al.Review on application of solar interfacial evaporation[J]. Distributed energy, 2021, 6(3): 1-9.
[8] 雷晖, 汪孔祥, 马维刚, 等. 不同光学边界条件强化石墨烯-乙二醇纳米流体吸收器的集热性能[J]. 中南大学学报(自然科学版), 2021, 52(1): 153-159.
LEI H, WANG K X, MA W G, et al.Enhancement of heat collection properties of graphene-ethylene based nanofluid absorbers under different optical boundary conditions[J]. Journal of Central South University(science and technology), 2021, 52(1): 153-159.
[9] SHI L, WANG X Z, HU Y W, et al.Solar-thermal conversion and steam generation: a review[J]. Applied thermal engineering, 2020, 179: 115691.
[10] GAO M M, PEH C K, PHAN H T, et al.Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation[J]. Advanced energy materials, 2018, 8(25): 1800711.
[11] ZHOU L, TAN Y L, WANG J Y, et al.3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature photonics, 2016, 10: 393-398.
[12] LIAO Y L, CHEN J H, ZHANG D N, et al.Lotus leaf as solar water evaporation devices[J]. Materials letters, 2019, 240: 92-95.
[13] ESSA F A, ELSHEIKH A H, ALGAZZAR A A, et al.Eco-friendly coffee-based colloid for performance augmentation of solar stills[J]. Process safety and environmental protection, 2020, 136: 259-267.
[14] LIU H W, CHEN C J, WEN H, et al.Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification[J]. Journal of materials chemistry A, 2018, 6(39): 18839-18846.
[15] GAO M M, ZHU L L, PEH C K, et al.Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & environmental science, 2019, 12(3): 841-864.
[16] CHEN Z J, DANG B, LUO X F, et al.Deep eutectic solvent-assisted in situ wood delignification: a promising strategy to enhance the efficiency of wood-based solar steam generation devices[J]. ACS applied materials & interfaces, 2019, 11(29): 26032-26037.
[17] ZHANG X F, WANG Z G, SONG L, et al.Chinese ink enabled wood evaporator for continuous water desalination[J]. Desalination, 2020, 496: 114727.
[18] ZHU M M, XIA A D, FENG Q Q, et al.Biomass carbon materials for efficient solar steam generation prepared from carbonized enteromorpha prolifera[J]. Energy technology, 2020, 8(5): 1901215.
[19] LI Y J, GAO T T, YANG Z, et al.3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 Sun illumination[J]. Advanced materials, 2017, 29(26): 1700981.
[20] LI X Q, XU W C, TANG M Y, et al.Graphene oxide-based efficient and scalable solar desalination under one Sun with a confined 2D water path[J]. Proceedings of the national academy of sciences of the United States of America, 2016, 113(49): 13953-13958.
[21] REN H Y, TANG M, GUAN B L, et al.Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced materials, 2017, 29(38): 1702590.
[22] HU X Z, XU W C, ZHOU L, et al.Tailoring graphene oxide-based aerogels for efficient solar steam generation under one Sun[J]. Advanced materials, 2017, 29(5): 1604031.
[23] YANG Y, ZHAO R Q, ZHANG T F, et al.Graphene-based standalone solar energy converter for water desalination and purification[J]. ACS nano, 2018, 12(1): 829-835.
[24] WANG Y D, WU X, WU P, et al.Enhancing solar steam generation using a highly thermally conductive evaporator support[J]. Science bulletin, 2021, 66(24): 2479-2488.
[25] HUANG Y P, XIONG J, JIANG X S, et al.Assessment of firmness and soluble solids content of peaches by spatially resolved spectroscopy with a spectral difference technique[J]. Computers and electronics in agriculture, 2022, 200: 107212.
[26] SUN P, ZHANG W, ZADA I, et al.3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation[J]. ACS applied materials & interfaces, 2020, 12(2): 2171-2179.
[27] GONG B Y, YANG H C, WU S H, et al.Multifunctional solar bamboo straw: multiscale 3D membrane for self-sustained solar-thermal water desalination and purification and thermoelectric waste heat recovery and storage[J]. Carbon, 2021, 171: 359-367.
[28] GUO M X, WU J B, LI F H, et al.A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New carbon materials, 2020, 35(4): 436-443.
[29] SUN Z Z, LI W Z, SONG W L, et al.A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration[J]. Journal of materials chemistry A, 2020, 8(1): 349-357.
[30] LIU C, HONG K, SUN X, et al.An ‘antifouling' porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination[J]. Journal of materials chemistry A, 2020, 8(25): 12323-12333.
[31] QIU P X, LIU F L, XU C M, et al.Porous three-dimensional carbon foams with interconnected microchannels for high-efficiency solar-to-vapor conversion and desalination[J]. Journal of materials chemistry A, 2019, 7(21): 13036-13042.
[32] ZHAO Z J, JIA G Z, LIU Y L, et al.Carbonized bark by laser treatment for efficient solar-driven interface evaporation[J]. ACS omega, 2020, 5(23): 13482-13488.
[33] ZHANG Y X, RAVI S K, TAN S C.Systematic study of the effects of system geometry and ambient conditions on solar steam generation for evaporation optimization[J]. Advanced sustainable systems, 2019, 3(8): 1900044.
[34] YU Z, CHENG S A, LI C C, et al.Enhancing efficiency of carbonized wood based solar steam generator for wastewater treatment by optimizing the thickness[J]. Solar energy, 2019, 193: 434-441.
[35] JIA C, LI Y J, YANG Z, et al.Rich mesostructures derived from natural woods for solar steam generation[J]. Joule, 2017, 1(3): 588-599.
[36] TANG J B, ZHENG T, SONG Z P, et al.Realization of low latent heat of a solar evaporator via regulating the water state in wood channels[J]. ACS applied materials & interfaces, 2020, 12(16): 18504-18511.
[37] CHEN T J, WU Z Z, LIU Z Y, et al.Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation[J]. ACS applied materials & interfaces, 2020, 12(17): 19511-19518.
[38] MA N, FU Q, HONG Y X, et al.Processing natural wood into an efficient and durable solar steam generation device[J]. ACS applied materials & interfaces, 2020, 12(15): 18165-18173.
[39] ZHANG Q, LI L, JIANG B, et al.Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination[J]. ACS applied materials & interfaces, 2020, 12(25): 28179-28187.
[40] CHAO W X, SUN X H, LI Y D, et al.Enhanced directional seawater desalination using a structure-guided wood aerogel[J]. ACS applied materials & interfaces, 2020, 12(19): 22387-22397.
[41] WANG Z, YAN Y T, SHEN X P, et al.Candle soot nanoparticle-decorated wood for efficient solar vapor generation[J]. Sustainable energy & fuels, 2020, 4(1): 354-361.
[42] LIU K K, JIANG Q S, TADEPALLI S, et al.Wood-graphene oxide composite for highly efficient solar steam generation and desalination[J]. ACS applied materials & interfaces, 2017, 9(8): 7675-7681.
[43] GHAFURIAN M M, NIAZMAND H, EBRAHIMNIA-BAJESTAN E, et al.Wood surface treatment techniques for enhanced solar steam generation[J]. Renewable energy, 2020, 146: 2308-2315.
[44] WANG Z, YAN Y T, SHEN X P, et al.A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement[J]. Journal of materials chemistry A, 2019, 7(36): 20706-20712.
[45] ZHANG X Q, YANG L T, DANG B, et al.Nature-inspired design: p-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation[J]. Nano energy, 2020, 78: 105322.
[46] GAO H, YANG M M, DANG B, et al.Natural phenolic compound-iron complexes: sustainable solar absorbers for wood-based solar steam generation devices[J]. RSC advances, 2020, 10(2): 1152-1158.
[47] 杨科. 木基太阳能界面蒸发材料的制备及其性能研究[D]. 兰州: 兰州大学, 2021.
YANG K.Preparation and performance research of wood-based solar interface evaporation materials[D]. Lanzhou: Lanzhou University, 2021.
[48] WANG Z X, WU X C, HE F, et al.Confinement capillarity of thin coating for boosting solar-driven water evaporation[J]. Advanced functional materials, 2021, 31(22): 2011114.
[49] LI W G, LI Z, BERTELSMANN K, et al.Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis[J]. Advanced materials, 2019, 31(29): e1900720.
[50] SHI Y, LI R Y, JIN Y, et al.A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018, 2(6): 1171-1186.
[51] 张弛, 苏风民, 王一凡, 等. 绝热结构对太阳能界面蒸发性能影响的实验研究[J]. 水处理技术, 2022, 48(11): 41-46.
ZHANG C, SU F M, WANG Y F, et al.Experimental study on the influence of insulation structure on solar interface evaporation performance[J]. Technology of water treatment, 2022, 48(11): 41-46.
[52] HE F, HAN M C, ZHANG J, et al.A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation[J]. Nano energy, 2020, 71: 104650.
[53] LIU P F, MIAO L, DENG Z Y, et al.A mimetic transpiration system for record high conversion efficiency in solar steam generator under one-Sun[J]. Materials today energy, 2018, 8: 166-173.
[54] 陈木生, 黄金, 陈泽雄, 等. 菲涅尔定向传光装置仿真及其光学特性分析[J]. 中南大学学报(自然科学版), 2021, 52(1): 176-188.
CHEN M S, HUANG J, CHEN Z X, et al.Simulation and optical characteristics analysis of orientated light transmitting Fresnel concentrator[J]. Journal of Central South University (science and technology), 2021, 52(1): 176-188.
[55] WANG X Z, HE Y R, LIU X, et al.Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes[J]. Applied energy, 2017, 195: 414-425.
[56] WU L, DONG Z C, CAI Z R, et al.Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature communications, 2020, 11: 521.
[57] COOPER T A, ZANDAVI S H, NI G W, et al.Contactless steam generation and superheating under one Sun illumination[J]. Nature communications, 2018, 9: 5086.
[58] JANG H, CHOI J, LEE H, et al.Corrugated wood fabricated using laser-induced graphitization for salt-resistant solar steam generation[J]. ACS applied materials & interfaces, 2020, 12(27): 30320-30327.
[59] QIAO L F, LI N, LUO L, et al.Design of monolithic closed-cell polymer foams via controlled gas-foaming for high-performance solar-driven interfacial evaporation[J]. Journal of materials chemistry A, 2021, 9(15): 9692-9705.

基金

国家自然科学基金(52206216)

PDF(4810 KB)

Accesses

Citation

Detail

段落导航
相关文章

/