基于能量守恒原理的海缆结构力学特性理论分析研究

苏凯, 赵鑫蕊, 朱洪泽, 程永光

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 661-672.

PDF(2022 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2022 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 661-672. DOI: 10.19912/j.0254-0096.tynxb.2023-0263

基于能量守恒原理的海缆结构力学特性理论分析研究

  • 苏凯, 赵鑫蕊, 朱洪泽, 程永光
作者信息 +

STUDY ON THEORETICAL ANALYSIS OF MECHANICAL PROPERTIES OF SUBMARINE CABLES BASED ON ENERGY CONSERVATION PRINCIPLE

  • Su Kai, Zhao Xinrui, Zhu Hongze, Cheng Yongguang
Author information +
文章历史 +

摘要

基于能量守恒原理建立海缆在轴对称荷载作用下的3种力学分析理论模型,3种模型均可计入层间初始间隙,不同于螺旋层的变形考虑,模型1只考虑轴向变形,模型2在此基础上将径向变形考虑在内,模型3进一步计入局部弯曲和扭转;接着,通过具体实例验证理论模型的可靠性;最后,分析海缆的结构力学特性。研究结果表明:螺旋层的径向变形、局部弯曲和扭转对海缆轴对称力学响应影响较小,建议采用模型1进行分析;轴对称荷载作用下,螺旋层是主要的承载构件,且荷载的作用会导致层间发生分离,分离位置与荷载类型及方向有关;层间初始间隙越大,海缆刚度越小;铠装螺旋角度的增加会降低海缆抗拉刚度,增大顺/逆抗扭刚度;海缆的顺/逆扭转截面性能有所不同,其顺抗扭刚度较逆抗扭刚度大;外水压会增大海缆逆抗扭刚度,对抗拉刚度及顺抗扭刚度无影响。

Abstract

This paper establishes three theoretical models for the mechanical analysis of submarine cables under axisymmetric loads based on the principle of energy conservation. All three models take into account the initial gap between layers, which is different from the deformation consideration of the helical layer. Model 1 only considers axial deformation, Model 2 incorporates radial deformation on this basis and Model 3 further considers local bending and torsion. Then, the reliability of the theoretical model is verified through a specific example. Finally, the structural mechanical properties of the submarine cable are analyzed. The results show that the radial deformation, local bending and torsion of the helix layer have little influence on the axisymmetric mechanical response of the submarine cable, and it is recommended to use Model 1 for analysis. Under axisymmetric loads, the helical layer is the main bearing component, and the load will cause separation between the layers, with the separation position related to the type and direction of the load. The larger the initial gap, the smaller the stiffness of the submarine cable. The increase of the helix angle will reduce the tensile stiffness of the submarine cable and increase the clockwise/counterclockwise torsional stiffness. The clockwise/counterclockwise torsional sectional performance of the submarine cable is different, with the clockwise torsional stiffness being larger than the counterclockwise torsional stiffness. External water pressure will increase the counterclockwise torsional stiffness, and have no effect on the tensile stiffness and clockwise torsional stiffness.

关键词

海上风电 / 海缆 / 能量守恒 / 力学特性 / 轴对称荷载 / 截面性能

Key words

offshore wind power / submarine cables / energy conservation / mechanical properties / axisymmetric loads / cross-sectional properties

引用本文

导出引用
苏凯, 赵鑫蕊, 朱洪泽, 程永光. 基于能量守恒原理的海缆结构力学特性理论分析研究[J]. 太阳能学报. 2024, 45(6): 661-672 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0263
Su Kai, Zhao Xinrui, Zhu Hongze, Cheng Yongguang. STUDY ON THEORETICAL ANALYSIS OF MECHANICAL PROPERTIES OF SUBMARINE CABLES BASED ON ENERGY CONSERVATION PRINCIPLE[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 661-672 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0263
中图分类号: P751   

参考文献

[1] 陈倩, 王维庆, 王海云. 含分布式能源的配电网双层优化运行策略[J]. 太阳能学报, 2022, 43(10): 507-517.
CHEN Q, WANG W Q, WANG H Y.Bi-level optimal operation strategy of distribution network with distributed energy[J]. Acta energiae solaris sinica, 2022, 43(10): 507-517.
[2] 卢青针. 水下生产系统脐带缆的结构设计与验证[D]. 大连: 大连理工大学, 2013.
LU Q Z.Structural design and validation of umbilical of subsea production system[D]. Dalian: Dalian University of Technology, 2013.
[3] 曹淑刚, 张吉, 孙小钎, 等. 考虑弯曲刚度的高压海缆敷设受力分析[J]. 太阳能学报, 2019, 40(10): 3009-3016.
CAO S G, ZHANG J, SUN X Q, et al.Tension analysis of high voltage submarine cable laying considering bending stiffness[J]. Acta energiae solaris sinica, 2019, 40(10): 3009-3016.
[4] HRUSKA F.Calculation of stresses in wire ropes[J]. Wire wire prod, 1951, 26(9): 799-801.
[5] KNAPP R H.Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion[J]. International journal for numerical methods in engineering, 1979, 14(4): 515-529.
[6] UTTING W S, JONES N.The response of wire rope strands to axial tensile loads—part I. experimental results and theoretical predictions[J]. International journal of mechanical sciences, 1987, 29(9): 605-619.
[7] UTTING W S, JONES N.The response of wire rope strands to axial tensile loads—part II. comparison of experimental results and theoretical predictions[J]. International journal of mechanical sciences, 1987, 29(9): 621-636.
[8] WITZ J A, TAN Z.On the axial-torsional structural behaviour of flexible pipes, umbilicals and marine cables[J]. Marine structures, 1992, 5(2/3): 205-227.
[9] COSTELLO G A.Stresses in multilayered cables[J]. Journal of energy resources technology, 1983, 105(3): 337-340.
[10] LANTEIGNE J.Theoretical estimation of the response of helically armored cables to tension, torsion, and bending[J]. Journal of applied mechanics, 1985, 52(2): 423.
[11] 李鹏, 王博士, 郭健, 等. 基于有限元仿真的三芯光纤复合海缆扭转研究[J]. 郑州大学学报(工学版), 2022, 43(4): 67-73.
LI P, WANG B S, GUO J, et al.Torsional research of three-core fiber composite submarine cable based on finite element simulation[J]. Journal of Zhengzhou University(engineering science), 2022, 43(4): 67-73.
[12] 郭健, 王博士, 李鹏, 等. 复合海底电缆顺-逆扭转特性对比研究[J]. 光通信研究, 2022(2): 22-26, 78.
GUO J, WANG B S, LI P, et al.Comparative study on clockwise-anticlockwise torsion characteristics of composite submarine cable[J]. Study on optical communications, 2022(2): 22-26, 78.
[13] FANG P, JIANG X L, HOPMAN H, et al.Mechanical responses of submarine power cables subject to axisymmetric loadings[J]. Ocean engineering, 2021, 239: 109847.
[14] BAI Y, LU Y T, CHENG P.Theoretical and finite-element study of mechanical behaviour of central, large-diameter umbilical cables under tension and torsion[J]. Ships and offshore structures, 2015, 10(4): 393-403.
[15] 王文超, 张建民, 赵囿林, 等. 扁钢丝铠装光纤复合海缆拉伸试验与仿真分析[J]. 高电压技术, 2019, 45(11): 3467-3473.
WANG W C, ZHANG J M, ZHAO Y L, et al.Tension test and simulation analysis on flat-steel-wire-armoured optical fiber composite submarine cable[J]. High voltage engineering, 2019, 45(11): 3467-3473.
[16] 任少飞, 唐文勇, 薛鸿祥. 轴压下非黏结柔性立管响应特性的数值计算方法[J]. 上海交通大学学报, 2014, 48(4): 565-569, 582.
REN S F, TANG W Y, XUE H X.A numerical method to predict the behavior of unbonded flexible risers under axial compression[J]. Journal of Shanghai Jiao Tong University, 2014, 48(4): 565-569, 582.
[17] GREENHILL A G. A treatise on the mathematical theory of elasticity[J]. Nature, 1893, 47: 529-530.
[18] 徐芝纶. 弹性力学-下册[M]. 3版. 北京: 高等教育出版社, 1992.
XU Z L.Elasticity-volume II[M]. 3rd edition. Beijing: Higher Education Press, 1992.
[19] 陆钰天. 深水柔性立管截面力学模型与疲劳寿命分析研究[D]. 杭州: 浙江大学, 2017.
LU Y T.Study on mechanical model and fatigue life analysis of deep water flexible riser section[D]. Hangzhou: Zhejiang University, 2017.
[20] ELIZBAR K.Theoretical modelling of unbonded flexible pipe cross-sections[D]. London: London South Bank University, 2000.
[21] 董磊磊, 张崎, 黄一. 基于能量法的非黏合柔性立管轴对称响应分析[J]. 华中科技大学学报(自然科学版), 2013, 41(5): 122-126.
DONG L L, ZHANG Q, HUANG Y.Energy approaches based axisymmetric analysis of unbonded flexi ble risers[J]. Journal of Huazhong University of Science and Technology(natural science edition), 2013, 41(5): 122-126.
[22] FE´RET J J, BOURNAZEL C L. Calculation of stresses and slip in structural layers of unbonded flexible pipes[J]. Journal of offshore mechanics and arctic engineering, 1987, 109(3): 263-269.
[23] 夏峰, 陈凯, 张永明. 海底电力电缆铠装结构机械强度分析及设计[J]. 电线电缆, 2011(3): 8-11.
XIA F, CHEN K, ZHANG Y M.Analysis and design of the mechanic strength of the armoring in submarine power cables[J]. Electric wire & cable, 2011(3): 8-11.

基金

国家自然科学基金(51379159)

PDF(2022 KB)

Accesses

Citation

Detail

段落导航
相关文章

/