针对电容电感都为分数阶这一事实,利用分数阶微积分R-L定义和状态空间平均法,对工作在电感电流连续模式(CCM)下的分数阶Flyback变换器进行建模与分析。推导CCM分数阶Flyback变换器的静态工作点和小信号传递函数以及变换器工作在CCM模式下的条件。其次,讨论Caputo模型与R-L导数模型的区别,得出在R-L分数阶定义下直流静态工作点不仅与占空比相关,而且还与电感和电容的阶数以及负载有关。最后,在PSIM中搭建R-L分数阶CCM Flyback变换器电路模型,得到不同分数阶电感电容阶数下分数阶Flyback变换器输出电压和电感电流的仿真波形,通过仿真结果与理论计算结果对比,验证所建模型的正确性,得出分数阶电感电容的阶数会影响闭环控制器的设计和分数阶模型能更加精确地描述Flyback变换器的工作特性。
Abstract
In view of the fact that capacitors and inductors are fractional order, fractional-order Flyback converters operating in current continuous mode (CCM) are modeled and analyzed by using fractional-order calculus R-L definition and state-space averaging method. The mean state model, boost ratio, DC static equilibrium point, inductor cur-rent ripple and the condition of CCM Flyback converter working in CCM mode are derived. Secondly, the difference between Caputo model and R-L derivative model is discussed. It is concluded that the DC static operating point and boost ratio under R-L fractional order definition are not only related to duty ratio, but also related to the order of inductance and capacitance and load. Finally, the circuit model of R-L fractional-order CCM Flyback converter was built in PSIM, and the simulation waveforms of the output voltage and inductance current of fractional-order Flyback converter were made under different fractional-order inductance and capacitance orders. By comparing the simulation results with the theoretical calculation results, the correctness of the model was verified. It is concluded that the fractional-order Flyback converter model derived from R-L definition can more accurately describe the operating characteristics of CCM fractional-order flyback converter.
关键词
DC-DC变换器 /
电力电子 /
仿真平台 /
R-L定义 /
分数阶建模
Key words
DC-DC converters /
power electronics /
simulation platform /
R-L definition /
fractional-order modeling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王立乔, 林健, 朱文通, 等. 一种新型三相Buck-Boost光伏逆变器漏电流抑制研究[J]. 太阳能学报, 2022, 43(7): 101-108.
WANG L Q, LIN J, ZHU W T, et al.Research on leakage current suppression of a new three-phase Buck-Boost photovoltaic inverter[J]. Acta energiae solaris sinica, 2022, 43(7): 101-108.
[2] 袁成功, 张民, 薛鹏飞, 等. 新型耦合电感高增益DC-DC变换器[J]. 太阳能学报, 2023, 44(4): 448-455.
YUAN C G, ZHANG M, XUE P F, et al.Novel coupled inductor high-gain DC-DC converter[J]. Acta energiae solaris sinica, 2023, 44(4): 448-455.
[3] SOLTAN A, RADWAN A G, SOLIMAN A M.Fractional-order mutual inductance: analysis and design[J]. International journal of circuit theory and applications, 2016, 44(1): 85-97.
[4] 薛定宇. 分数阶微积分学与分数阶控制[M]. 北京: 科学出版社, 2018.
XUE D Y.Fractional calculus and fractional-order control[M]. Beijing: Science Press, 2018.
[5] MERAL F C, ROYSTON T J, MAGIN R.Fractional calculus in viscoelasticity: an experimental study[J]. Communications in nonlinear science and numerical simulations, 2010, 15(4): 939-945.
[6] 王发强, 马西奎. 电感电流连续模式下Boost变换器的分数阶建模与仿真分析[J]. 物理学报, 2011, 60(7): 96-103.
WANG F Q, MA X K.Fractional order modeling and simulation analysis of Boost converter in continuous conduction mode operation[J]. Acta physica sinica, 2011, 60(7): 96-103.
[7] WEI Z H, ZHANG B, JIANG Y W.Analysis and modeling of fractional-order buck converter based on riemann-liouville derivative[J]. IEEE access, 2019, 7: 162768-162777.
[8] LI M, ZHANG B, QIU D Y.Sneak circuit analysis for a DCM flyback DC-DC converter considering parasitic parameters[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference(IPEMC-ECCE Asia). Hefei, 2016: 1151-1155.
[9] 贾磊磊, 孙孝峰, 潘尧, 等. 非反向Buck-Boost变换器的多模式定频双向ZVS控制策略[J]. 太阳能学报, 2022, 43(12): 520-530.
JIA L L, SUN X F, PAN Y, et al.Multimode constant frequency bidirectional ZVS control strategy for noninverting Buck-Boost converter[J]. Acta energiae solaris sinica, 2022, 43(12): 520-530.
[10] RADWAN A G, SALAMA K N.Fractional-order RC and RL circuits[J]. Circuits, systems, and signal processing, 2012, 31(6): 1901-1915.
[11] YANG C, XIE F, CHEN Y F, et al.Modeling and analysis of the fractional-order flyback converter in continuous conduction mode by caputo fractional calculus[J]. Electronics, 2020, 9(9): 1544.
[12] 谢玲玲, 李嘉晨. 基于分数阶R-L定义的分数阶CCM Boost变换器建模及仿真分析[J]. 南京理工大学学报, 2020, 44(5): 560-566.
XIE L L, LI J C.Modeling and simulation analysis of fractional-order CCM Boost converter based on fractional-order R-L definition[J]. Journal of Nanjing University of Science and Technology, 2020, 44(5): 560-566.
[13] 王仁明, 李啸, 张赟宁. 基于R-L分数阶定义的PCCM Boost变换器建模与分析[J/OL].电源学报,1-13[2023-02-20].
WANG R M, LI X, ZHANG Y N.Modeling and analysis of PCCM Boost converter based on R-L fractional definition[J/OL]. Journal of power supply:1-13[2023-02-20].
[14] XIE L L, LIU Z P, ZHANG B.A modeling and analysis method for CCM fractional order buck-boost converter by using R-L fractional definition[J]. Journal of electrical engineering & technology, 2020, 15(4): 1651-1661.
[15] 杨晨. 分数阶变压器构造及分数阶反激变换器建模分析[D]. 广州: 华南理工大学, 2021.
YANG C.Construction of fractional transformer and modeling analysis of fractional flyback converter[D].Guangzhou: South China University of Technology, 2021.
[16] 杨可, 苏尚流. 基于状态空间平均法的反激变换器DCM小信号建模[J]. 通信电源技术, 2021, 38(2): 6-9.
YANG K, SU S L.Small signal modeling of flyback converter in DCM with state-space averaging method[J]. Telecom power technology, 2021, 38(2): 6-9.
[17] RADWAN A G.Stability analysis of the fractional-order RLC circuit[J]. Fractional calculus and applied analysis, 2012, 3(1): 1-15.
[18] 赵涛, 刘汉忠, 黄家才, 等. 电流模式DCM反激变换电路的建模和设计[J]. 电源技术, 2014, 38(11): 2122-2124.
ZHAO T, LIU H Z, HUANG J C, et al.Design and modeling for current-mode controlled flyback converter in DCM[J]. Chinese journal of power sources, 2014, 38(11): 2122-2124.
[19] FANG S C, WANG X G.Modeling and analysis method of fractional-order buck-boost converter[J]. International journal of circuit theory and applications, 2020, 48(9): 1493-1510.
基金
国家自然科学基金(12072205); 河北省省级科技计划(21341801D); 国网河北省电力有限公司科技项目(kj2022-015)