基于过程解耦和工质物性的有机朗肯循环性能分析

韩中合, 沈明轩, 杨伊琳, 刘世通, 赵文升, 李鹏

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 226-233.

PDF(1882 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1882 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 226-233. DOI: 10.19912/j.0254-0096.tynxb.2023-0291

基于过程解耦和工质物性的有机朗肯循环性能分析

  • 韩中合1,2, 沈明轩1, 杨伊琳1, 刘世通1, 赵文升1, 李鹏1,2
作者信息 +

PERFORMANCE ANALYSIS OF ORGANIC RANKINE CYCLE BASED ON PROCESS DECOUPLING AND WORKING FLUID PROPERTIES

  • Han Zhonghe1,2, Shen Mingxuan1, Yang Yilin1, Liu Shitong1, Zhao Wensheng1, Li Peng1,2
Author information +
文章历史 +

摘要

通过对有机朗肯循环工作过程的拆分解耦,利用工质物性中的临界温度、偏心因子结合循环参数推导其热力学性能表征式,进而建立循环的热力学模型,并借助该模型分析循环参数对循环热力学性能评价指标的影响规律。研究结果显示:当蒸发温度升高时,循环热效率会增大,但其净输出功和㶲效率先增大,然后再降低;当冷凝温度升高时,循环的热效率、净输出功和㶲效率都会下降;当过热度升高时,循环的净输出功和㶲效率随过之降低,而循环的热效率随之增大。基于工质物性引入雅各布数,循环的净输出功和热效率随雅各布数的增大分别呈现出增大和减小的趋势,而临界温度越高热效率随之升高。

Abstract

Through the separation and decoupling of the working process of the organic Rankine cycle, the thermodynamic performance expressions of the working fluid are derived by using the critical temperature, acentric factor in the physical properties of the working fluid and the cycle parameters, and then the thermodynamic model of the cycle is established. With the help of this model, the influence of the cycle parameters on the thermodynamic performance evaluation index of the cycle is analyzed. The research results show that as the evaporation temperature increases, the cycle thermal efficiency increases, but its net output power and exergy efficiency grows first and then decrease. When the condensation temperature increases, the thermal efficiency, net output work, and exergy efficiency of the cycle will all decrease. When the degree of superheat increases, the net output power and exergy efficiency decrease, while the cycle thermal efficiency increases. Based on the introduction of Jacobian number based on the physical properties of the working fluid, the net output power and exergy efficiency show an increasing and decreasing trend with the increase of Jacobian number, respectively. The higher the critical temperature, the higher the thermal efficiency.

关键词

有机朗肯循环 / 循环性能 / 解耦 / 工质物性

Key words

organic Rankine cycle / cycle performance / decoupling / working fluid property

引用本文

导出引用
韩中合, 沈明轩, 杨伊琳, 刘世通, 赵文升, 李鹏. 基于过程解耦和工质物性的有机朗肯循环性能分析[J]. 太阳能学报. 2024, 45(6): 226-233 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0291
Han Zhonghe, Shen Mingxuan, Yang Yilin, Liu Shitong, Zhao Wensheng, Li Peng. PERFORMANCE ANALYSIS OF ORGANIC RANKINE CYCLE BASED ON PROCESS DECOUPLING AND WORKING FLUID PROPERTIES[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 226-233 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0291
中图分类号: TK123   

参考文献

[1] 习近平在第七十五届联合国大会一般性辩论上发表重要讲话: 强调要树立命运共同体意识和合作共赢理念,坚定不移构建开放型世界经济,树立新发展理念,坚持走多边主义道路,改革完善全球治理体系,宣布中国支持联合国发挥核心作用重大举措[N]. 人民日报, 2020-09-23(1).
Xi Jinping delivers an important speech at the general debate of the 75th session of the UN General Assembly: Emphasizing the need to build a sense of community of destiny and the concept of win-win cooperation, unswervingly building an open world economy, establishing a new development concept, adhering to the path of multilateralism, reforming and improving the system of global governance,announcing China's support for the United Nations to play a central role in major initiatives[N]. People's Daily, 2020-09-23(1).
[2] 夏建军. 流程工业余热资源及利用[J]. 可持续发展经济导刊, 2022(4): 30-31.
XIA J J.Waste heat resources and utilization in process industry[J]. China sustainability tribune, 2022(4): 30-31.
[3] 王海波. 有机朗肯循环工质研究现状[J]. 资源节约与环保, 2020(9): 117.
WANG H B.Research status of organic Rankine cycle working fluids[J]. Resources economization & environmental protection, 2020(9): 117.
[4] 杨剑. 双碳战略下的ORC余热发电应用前景展望[J]. 能源与节能, 2022(2): 18-20.
YANG J.Application prospect of ORC waste heat power generation under carbon peak and carbon neutrality strategy[J]. Energy and energy conservation, 2022(2): 18-20.
[5] 曾理. 基于有机工质朗肯循环系统的低温余热发电技术简述[J]. 节能, 2015, 34(9): 77-78.
ZENG L.Brief introduction of low temperature waste heat power generation technology based on organic working medium Rankine cycle system[J]. Energy conservation, 2015, 34(9): 77-78.
[6] ZHAO J, HU L K, WANG Y Z, et al.How to rapidly predict the performance of ORC: optimal empirical correlation based on cycle separation[J]. Energy conversion and management, 2019, 188: 86-93.
[7] 胡立凯. 低冷凝温度下有机朗肯循环性能分析和工质筛选[D]. 天津: 天津大学, 2019.
HU L K.Performance study of organic Rankine cycle system and working fluid selection at low condensation temperature[D]. Tianjin: Tianjin University, 2019.
[8] WANG Y Z, ZHAO J, CHEN G B, et al.A new understanding on thermal efficiency of organic Rankine cycle: cycle separation based on working fluids properties[J]. Energy conversion and management, 2018, 157: 169-175.
[9] 苏文, 赵力, 邓帅. 基于工质物性的热力循环性能探索[J]. 科学通报, 2018, 63(2): 232-240.
SU W, ZHAO L, DENG S.The performance of thermodynamic cycles based on the properties of working fluids[J]. Chinese science bulletin, 2018, 63(2): 232-240.
[10] 朱轶林, 王永真, 张新敬, 等. 生物质有机朗肯循环热电联供系统的热经济分析[J]. 太阳能学报, 2021, 42(12): 312-319.
ZHU Y L, WANG Y Z, ZHANG X J, et al.Thermo-economic analysis of biomass-fired organic Rankine cycle combined heat and power system[J]. Acta energiae solaris sinica, 2021, 42(12): 312-319.
[11] SU W, ZHAO L, DENG S.Developing a performance evaluation model of organic Rankine cycle for working fluids based on the group contribution method[J]. Energy conversion and management, 2017, 132: 307-315.
[12] 陈晓雪, 刘朝, 李期斌, 等. 混合工质(R227ea/R245fa)有机朗肯循环的动态特性研究[J]. 工程热物理学报, 2020, 41(7): 1604-1611.
CHEN X X, LIU C, LI Q B, et al.Dynamic study of organic Rankine cycle using mixtures(R227ea/R245fa) as working fluid[J]. Journal of engineering thermophysics, 2020, 41(7): 1604-1611.
[13] CHEN H J, GOSWAMI D Y, STEFANAKOS E K.A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J]. Renewable and sustainable energy reviews, 2010, 14(9): 3059-3067.
[14] 王永真, 安青松, 邓帅, 等. 基于过程解耦的有机朗肯循环性能预测[J]. 工程热物理学报, 2019, 40(3): 490-496.
WANG Y Z, AN Q S, DENG S, et al.Performance prediction of organic Rankine cycle: thermodynamic process decoupling based on fluid key properties[J]. Journal of engineering thermophysics, 2019, 40(3): 490-496.
[15] YANG L X, GONG M Q, GUO H, et al.Effects of critical and boiling temperatures on system performance and fluid selection indicator for low temperature organic Rankine cycles[J]. Energy, 2016, 109: 830-844.
[16] CAVAZZINI G, BARI S, PAVESI G, et al.A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical organic Rankine cycles[J]. Energy, 2017, 129: 42-58.
[17] DO CARMO F R, DA SILVA M R L, ALVES A A A, et al. A new method for predicting the isobaric heat capacity of biodiesel-related esters based on the corresponding states principle[J]. Fluid phase equilibria, 2020, 521: 112734.
[18] COBAN M T.Thermodynamic and thermophysical properties of pure gases by using Schreiber-Pitzer EoS[C]//ULIBTK'21 23rd Congress of Thermal Science and Technology with International Participation. Gaziantep, Turkey, 2021.
[19] ABBAS W K A, LINNEMANN M, BAUMHÖGGER E, et al. Experimental study of two cascaded organic Rankine cycles with varying working fluids[J]. Energy conversion and management, 2021, 230: 113818.
[20] 李鹏, 韩中合, 梅中恺, 等. 低温过热有机朗肯循环工质筛选及参数优化[J]. 太阳能学报, 2018, 39(9): 2393-2402.
LI P, HAN Z H, MEI Z K, et al.Working fluid selection and parametric optimization of a superheat organic Rankine cycle for low temperature waste heat recovery[J]. Acta energiae solaris sinica, 2018, 39(9): 2393-2402.

基金

国家自然科学基金(52106010); 中央高校基本科研业务费专项资金(2021MS077); 河北省高等学校科学技术研究项目(QN2023081); 保定市科技计划(2272P017)

PDF(1882 KB)

Accesses

Citation

Detail

段落导航
相关文章

/