核壳基生物质热解炭特性及其改性研究

张万里, 刘平, 殷广智, 孔天岐, 李润东

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 10-21.

PDF(2681 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2681 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 10-21. DOI: 10.19912/j.0254-0096.tynxb.2023-0296

核壳基生物质热解炭特性及其改性研究

  • 张万里, 刘平, 殷广智, 孔天岐, 李润东
作者信息 +

CHARACTERISTICS AND MODIFICATION OF PYROLYSIS CARBON OF CORE-SHELL BASED BIOMASS

  • Zhang Wanli, Liu Ping, Yin Guangzhi, Kong Tianqi, Li Rundong
Author information +
文章历史 +

摘要

以椰子壳、花生壳、榛子壳3种核壳基生物质为原料,在不同热解温度(400、550、700 ℃)下制备热解炭并进行酸(HNO3)和碱(KOH)改性,进而对核壳基生物质热解炭及其改性炭材料的产率、导电性能、元素成分、比表面积和孔隙、微观形貌、傅里叶红外光谱等特性进行研究。结果表明,椰子壳炭产率受热解温度变化的影响最小,榛子壳炭产率最高。随着热解温度的升高,热解炭电导率(700 ℃热解所得椰子壳炭最高,为6.24×105 μS/cm)、灰分和固定碳含量增大,炭化程度更高,H/C、O/C和(O+N)/C物质的量之比降低,炭稳定性和芳香性更强,孔径略降,而比表面积显著增大(700 ℃热解所得花生壳炭最高,为393.10 m2/g),脱羧基和羰基化致含氧官能团减少。酸(HNO3)、碱(KOH)改性对热解炭特性有显著影响。酸改性后热解炭表面更疏松且有丰富的孔道结构,酸性官能团(C=O)数量增多,400 ℃所得3类热解炭电导率均显著上升而550和700 ℃所得热解炭电导率均下降。碱改性后热解炭表面孔隙发达且有清晰的纤维状结构,含氧官能团(—OH)数量增多,除550 ℃椰子壳炭和400 ℃花生壳炭外,其他热解炭电导率均下降。

Abstract

In this study, three core-shell biomass including coconut shell, peanut shell and hazelnut shell were pyrolyzed to prepare pyrolysis carbon under different pyrolysis temperatures (400 ℃, 550 ℃ and 700 ℃). Then pyrolysis carbons were modified by acid (HNO3) and alkali (KOH). The physical and chemical properties including electrical conductivity, element composition, ash content, specific surface area, scanning electron microscope and fourier transform infrared spectroscopy (FTIR) of pyrolysis carbons and modified pyrolysis carbons were characterized. The results show that the effect of pyrolysis temperature on carbon yield of coconut shell is not obvious, while the hazel shell carbon yield is the highest. With the increase of pyrolysis temperature, the electrical conductivity and contents of ash and fixed carbon of pyrolysis carbons are enhanced. The coconut shell carbon obtained at 700 ℃ achieves the greatest electrical conductivity (6.24×105 μS/cm). Meanwhile, the carbonization degree of pyrolysis carbon also becomes higher, but the molar ratios of H/C, O/C and (O+N)/C decrease, which indicates the higher stability and aromaticity. Moreover, the pore sizes of pyrolysis carbons decrease slightly while the specific surface area increase significantly. The peanut shell carbon obtained at 700 ℃ achieves the largest specific surface area (393.10 m2/g). The oxygen-containing functional groups in pyrolysis carbons decrease due to decarboxylate and carbonylation. The acid (HNO3) and alkali (KOH) modification have significant influences on characteristics of pyrolysis carbon. After acid modification, the surface of pyrolysis carbon becomes more loose and has abundant pore structure, and the number of acidic functional groups (C=O) increase. The electrical conductivity of pyrolysis carbons obtained at 400 ℃ increase significantly, while those obtained at 550 ℃ and 700 ℃ decrease. After alkali modification, pyrolysis carbons own abundant pores and clear fibrous structures, and the number of oxygen-containing functional groups (—OH) increase. Except for coconut shell carbon obtained at 550 ℃ and peanut shell carbon obtained at 400 ℃, the electrical conductivities of other pyrolysis carbons decrease.

关键词

生物质 / 热解 / / 化学改性 / 表征

Key words

biomass / pyrolysis / carbon / chemical modification / characterization

引用本文

导出引用
张万里, 刘平, 殷广智, 孔天岐, 李润东. 核壳基生物质热解炭特性及其改性研究[J]. 太阳能学报. 2024, 45(6): 10-21 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0296
Zhang Wanli, Liu Ping, Yin Guangzhi, Kong Tianqi, Li Rundong. CHARACTERISTICS AND MODIFICATION OF PYROLYSIS CARBON OF CORE-SHELL BASED BIOMASS[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 10-21 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0296
中图分类号: TK16   

参考文献

[1] YANG F, WANG C P, SUN H W.A comprehensive review of biochar-derived dissolved matters in biochar application: production, characteristics, and potential environmental effects and mechanisms[J]. Journal of environmental chemical engineering, 2021, 9(3): 105258.
[2] DENG C, LIN R C, KANG X H, et al.What physicochemical properties of biochar facilitate interspecies electron transfer in anaerobic digestion: a case study of digestion of whiskey by-products[J]. Fuel, 2021, 306: 121736.
[3] SAIFULLAH, DAHLAWI S, NAEEM A, et al.Biochar application for the remediation of salt-affected soils: challenges and opportunities[J]. The science of the total environment, 2018, 625: 320-335.
[4] GAO S Y, LI L Y, GENG K R, et al.Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction[J]. Nano energy, 2015, 16: 408-418.
[5] LIANG J, XU X Y, QAMAR ZAMAN W, et al.Different mechanisms between biochar and activated carbon for the persulfate catalytic degradation of sulfamethoxazole: roles of radicals in solution or solid phase[J]. Chemical engineering journal, 2019, 375: 121908.
[6] ZHOU G X, XU X F, QIU X W, et al.Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure[J]. Bioresource technology, 2019, 272: 10-18.
[7] ZHAO D Y, YAN B H, LIU C, et al.Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste[J]. Bioresource technology, 2021, 338: 125531.
[8] ZHOU S W, WEI Y G, LI B, et al.Cleaner recycling of iron from waste copper slag by using walnut shell char as green reductant[J]. Journal of cleaner production, 2019, 217: 423-431.
[9] SUN Y N, GAO B, YAO Y, et al.Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties[J]. Chemical engineering journal, 2014, 240: 574-578.
[10] 王炯, 张品, 张舒晴, 等. 温度对秸秆生物炭理化特性和电化学特性的影响[J]. 太阳能学报, 2022, 43(5): 399-404.
WANG J, ZHANG P, ZHANG S Q, et al.Effect of temperature on physicochemical properties of straw biochar: focus on surface appearance and electrochemical properties[J]. Acta energiae solaris sinica, 2022, 43(5): 399-404.
[11] SAHOO S S, VIJAY V K, CHANDRA R, et al.Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo[J]. Cleaner engineering and technology, 2021, 3: 100101.
[12] WANG J L, WANG S Z.Preparation, modification and environmental application of biochar: a review[J]. Journal of cleaner production, 2019, 227: 1002-1022.
[13] 王亚琢, 李丹妮, 陈虹媛, 等. 生物炭基材料在生物柴油制备中的研究进展[J]. 太阳能学报, 2023, 44(2): 188-197.
WANG Y Z, LI D N, CHEN H Y, et al.Research progress of biochar-based materials in preparation of biodiesel[J]. Acta energiae solaris sinica, 2023, 44(2): 188-197.
[14] LI Y C, SHAO J G, WANG X H, et al.Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption[J]. Energy & fuels, 2014, 28(8): 5119-5127.
[15] CHEN M, WANG F, ZHANG D L, et al.Effects of acid modification on the structure and adsorption $\mathrm{NH}_{4}^{+}-\mathrm{N}$ properties of biochar[J]. Renewable energy, 2021, 169: 1343-1350.
[16] JIN H M, CAPAREDA S, CHANG Z Z, et al.Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation[J]. Bioresource technology, 2014, 169: 622-629.
[17] 李慧敏. 生物质果壳基活性炭的制备及电化学性能研究[D]. 西安: 西北大学, 2021.
LI H M.Preparation and electrochemical performance of biomass shell-based activated carbon[D]. Xi'an: Northwest University, 2021.
[18] FAGBOHUNGBE M O, HERBERT B M J, HURST L, et al. Impact of biochar on the anaerobic digestion of citrus peel waste[J]. Bioresource technology, 2016, 216: 142-149.
[19] SHEN R X, JING Y, FENG J, et al.Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities[J]. Bioresource technology, 2020, 296: 122354.
[20] KAUR G, JOHNRAVINDAR D, WONG J W C. Enhanced volatile fatty acid degradation and methane production efficiency by biochar addition in food waste-sludge co-digestion: a step towards increased organic loading efficiency in co-digestion[J]. Bioresource technology, 2020, 308: 123250.
[21] WANG G J, LI Q, DZAKPASU M, et al.Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge[J]. Waste management, 2018, 80: 73-80.
[22] 范思辰. 源头调质改性生物炭制备及其重金属Pb吸附特性研究 [D]. 沈阳: 沈阳航空航天大学, 2020.
FAN S C.Study on adsorption properties of heavy metals by preparation of modified biochar based source conditioning[D]. Shenyang: Shenyang Aerospace University, 2020.
[23] FAN X H, WANG X Q, ZHAO B, et al.Sorption mechanisms of diethyl phthalate by nutshell biochar derived at different pyrolysis temperature[J]. Journal of environmental chemical engineering, 2022, 10(2): 107328.
[24] 陈永辉, 蔡海燕. 纤维素和木质素含量对稻草、锯末热解及燃烧特性的影响[J]. 能源工程, 2009(1): 38-42.
CHEN Y H, CAI H Y.Influence of cellulose and lignin contents on the pyrolysis and combustion feature of sawdust and straw[J]. Energy engineering, 2009(1): 38-42.
[25] CHEN L, WANG X H, YANG H P, et al.Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and py-GC/MS[J]. Journal of analytical and applied pyrolysis, 2015, 113: 499-507.
[26] ZHENG X B, YANG Z M, XU X H, et al.Characterization and ammonia adsorption of biochar prepared from distillers' grains anaerobic digestion residue with different pyrolysis temperatures[J]. Journal of chemical technology & biotechnology, 2018, 93(1): 198-206.
[27] 刘佳政, 牛文娟, 钟菲, 等. 不同类型秸秆生物炭的燃烧特性与动力学分析[J]. 太阳能学报, 2019, 40(6): 1647-1655.
LIU J Z, NIU W J, ZHONG F, et al.Combustion characteristics and kinetic analysis of different types of crop residue biochars[J]. Acta energiae solaris sinica, 2019, 40(6): 1647-1655.
[28] LENG L J, HUANG H J.An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource technology, 2018, 270: 627-642.
[29] 高新. 生物炭强化苯酚厌氧降解及甲烷化过程机理研究[D]. 西安: 西安建筑科技大学, 2020.
GAO X.Study on mechanism of phenol anaerobic degradation and methanation enhanced by biochar[D]. Xi'an: Xi'an University of Architecture and Technology, 2020.
[30] SINGH B, SINGH B P, COWIE A L.Characterisation and evaluation of biochars for their application as a soil amendment[J]. Soil research, 2010, 48(7): 516.
[31] VEERAKUMAR P, VEERAMANI V, CHEN S M, et al.Palladium nanoparticle incorporated porous activated carbon: electrochemical detection of toxic metal ions[J]. ACS applied materials & interfaces, 2016, 8(2): 1319-1326.
[32] MANAVALAN S, VEERAKUMAR P, CHEN S M, et al.Binder-free modification of a glassy carbon electrode by using porous carbon for voltammetric determination of nitro isomers[J]. ACS omega, 2019, 4(5): 8907-8918.
[33] MARTINS G, GOGOLA J L, CAETANO F R, et al.Quick electrochemical immunoassay for hantavirus detection based on biochar platform[J]. Talanta, 2019, 204: 163-171.
[34] 鲁猷栾, 穆新伟, 黄乐舒, 等. 生物质炭材料: 构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 5-12.
LU Y L, MU X W, HUANG L S, et al.Biomass carbon material: an ideal modified material for constructing electrochemical sensor[J]. Materials reports, 2022, 36(6): 5-12.
[35] RAFIQUE M I, USMAN A R A, AHMAD M, et al. In situ immobilization of Cr and its availability to maize plants in tannery waste-contaminated soil: effects of biochar feedstock and pyrolysis temperature[J]. Journal of soils and sediments, 2020, 20(1): 330-339.
[36] ALMUTAIRI A A, AHMAD M, RAFIQUE M I, et al.Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature[J]. Journal of the Saudi Society of Agricultural Sciences, 2023, 22(1): 25-34.
[37] SUN K, KANG M J, ZHANG Z Y, et al.Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J]. Environmental science & technology, 2013, 47(20): 11473-11481.
[38] DAS S K, GHOSH G K, AVASTHE R K, et al.Compositional heterogeneity of different biochar: effect of pyrolysis temperature and feedstocks[J]. Journal of environmental management, 2021, 278(Pt 2): 111501.
[39] ZHOU H Q, BROWN R C, WEN Z Y.Biochar as an additive in anaerobic digestion of municipal sludge: biochar properties and their effects on the digestion performance[J]. ACS sustainable chemistry & engineering, 2020, 8(16): 6391-6401.
[40] WANG P P, LIU X G, YU B C, et al.Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution[J]. The science of the total environment, 2020, 702: 134767.
[41] YOUSAF B, LIU G J, WANG R W, et al.Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach[J]. GCB bioenergy, 2017, 9(6): 1085-1099.
[42] TAN X F, LIU Y G, ZENG G M, et al.Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85.
[43] MA Z Q, MA Z Q, YANG Y Y, et al.In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: Hemicellulose, cellulose, and lignin[J]. Journal of analytical and applied pyrolysis, 2019, 140: 195-204.
[44] WANG L, OLSEN M N P, MONI C, et al. Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600 ℃[J]. Applications in energy and combustion science, 2022, 12: 100090.
[45] GÁMIZ B, VELARDE P, SPOKAS K A, et al. Biochar soil additions affect herbicide fate: importance of application timing and feedstock species[J]. Journal of agricultural and food chemistry, 2017, 65(15): 3109-3117.
[46] LU H P, LI Z A, GASCÓ G, et al. Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil[J]. The science of the total environment, 2018, 622/623: 892-899.
[47] AHMED M B, ZHOU J L, NGO H H, et al.Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater[J]. Bioresource technology, 2016, 214: 836-851.
[48] 钱鑫, 王鲁丰, 张玉媛, 等. 多孔苔藓生物炭作为微生物燃料电池阴极催化剂强化氧还原研究[J]. 太阳能学报, 2021, 42(11): 395-402.
QIAN X, WANG L F, ZHANG Y Y, et al.Study of porous moss biochar as cathode catalyst for microbial fuel cell to enhance oxygen reduction[J]. Acta energiae solaris sinica, 2021, 42(11): 395-402.
[49] LIAO W, ZHANG X, KE S J, et al.Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar[J]. Industrial crops and products, 2022, 186: 115238.
[50] 吴晓东, 邢泽炳, 谷晓霞, 等. 炭化温度对柠条生物炭结构和性能的影响[J]. 太阳能学报, 2021, 42(12): 297-303.
WU X D, XING Z B, GU X X, et al.Impact of carbonization temperature on structure and properties of caragana korshinskii kom biochar[J]. Acta energiae solaris sinica, 2021, 42(12): 297-303.
[51] CAO Q F, AN T Y, XIE J X, et al.Insight to the physiochemical properties and DOM of biochar under different pyrolysis temperature and modification conditions[J]. Journal of analytical and applied pyrolysis, 2022, 166: 105590.
[52] SUN Z Y, FENG L, LI Y Q, et al.The role of electrochemical properties of biochar to promote methane production in anaerobic digestion[J]. Journal of cleaner production, 2022, 362: 132296.
[53] MU Y K, MA H Z.NaOH-modified mesoporous biochar derived from tea residue for methylene Blue and Orange II removal[J]. Chemical engineering research and design, 2021, 167: 129-140.
[54] SAMSURI A W, SADEGH-ZADEH F, SEH-BARDAN B J. Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk[J]. Journal of environmental chemical engineering, 2013, 1(4): 981-988.
[55] REGUYAL F, SARMAH A K, GAO W.Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution[J]. Journal of hazardous materials, 2017, 321: 868-878.
[56] CHANG Z F, TIAN L P, DONG J H, et al.The molecular markers provide complementary information for biochar characterization before and after HNO3/H2SO4 oxidation[J]. Chemosphere, 2022, 301: 134422.
[57] DING Z H, HU X, WAN Y S, et al.Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests[J]. Journal of industrial and engineering chemistry, 2016, 33: 239-245.
[58] LYU F, LU X M, LI S S, et al.Dozens-fold improvement of biochar redox properties by KOH activation[J]. Chemical engineering journal, 2022, 429: 132203.
[59] 骆俊鹏, 方茹, 史娟娟, 等. 硝酸改性油菜生物炭对四环素的吸附性能研究[J]. 环境科技, 2019, 32(2): 17-23.
LUO J P, FANG R, SHI J J, et al.Adsorption performance of tetracycline on nitric acid-modified rape biochar[J]. Environmental science and technology, 2019, 32(2): 17-23.
[60] 侯正伟, 李建宏, 李财生, 等. 椰纤维生物炭及其硝酸改性对稻田土壤中Pb钝化的影响[J]. 环境科学, 2023, 44(8): 4497-4506.
HOU Z W, LI J H, LI C S, et al.Effect of coconut fiber biochar and its nitrate modification an Pb passivation in paddy soils[J]. Environmental science, 2023, 44(8):4497-4506.
[61] REN D J, YU H Y, WU J, et al.The study on adsorption behavior of 2, 4-DCP in solution by biomass carbon modified with CTAB-KOH[J]. Water science and technology: a journal of the international association on water pollution research, 2020, 82(8): 1535-1546.
[62] BASHIR S, ZHU J, FU Q L, et al.Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar[J]. Environmental science and pollution research, 2018, 25(12): 11875-11883.
[63] CHEN W, GONG M, LI K X, et al.Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH[J]. Applied energy, 2020, 278: 115730.
[64] WU Y R, CHENG H, PAN D, et al.Potassium hydroxide-modified algae-based biochar for the removal of sulfamethoxazole: Sorption performance and mechanisms[J]. Journal of environmental management, 2021, 293: 112912.
[65] 徐皓普, 汤波. 碱改性生物炭处理含Cd2+废水效果对比研究[J]. 环境科学与管理, 2022, 47(6): 82-85.
XU H P, TANG B.Study on adsorption mechanism of Cd2+ wastewater by modified biochar[J]. Environmental science and management, 2022, 47(6): 82-85.

基金

沈阳市科技计划社会治理科技专项(2-322-3-16); 辽宁省科技厅应用基础研究计划(2023JH2/101600010); 辽宁省教育厅科研重点项目(LJKZ0215)

PDF(2681 KB)

Accesses

Citation

Detail

段落导航
相关文章

/