基于CDRFG方法生成湍流入口边界,采用大涡模拟(LES)研究湍流条件下风力机翼型的动态气动特性。结果表明:在翼型俯仰振荡过程中,相同攻角时,下俯过程的升力系数脉动较上仰过程更加明显。在湍流来流条件下,升力系数的分布相对紊乱,且带有不同幅度的突变特性,其脉动特性较均匀来流显著增加,迟滞环纵向波动范围增大,非定常特性加剧,且平均攻角越小,湍流对升力系数脉动特性的影响越明显。湍流对翼型表面压力波动的影响主要位于前缘区域,前缘点脉动压力对湍流来流的响应强烈,沿弦向逐渐往后,翼型表面脉动压力对湍流来流的响应逐渐减弱。
Abstract
In this paper, the turbulent inlet boundary is generated based on the CDRFG (Consistent Discretizing Random Flow Generation) method, and the unsteady characteristics of a pitch oscillating airfoil in turbulent flow is researched by using the large eddy simulation(LES). The results show that the fluctuation characteristics of lift coefficient in downward pitch process is more obvious than that in the upward pitch process at the same angle of attack during the pitch oscillation of the airfoil. Compared with the uniform flow, the distribution of lift coefficient is relatively disordered with different amplitude abrupt characteristics in turbulent flow, and the fluctuation characteristics of lift coefficient is more significant, the longitudinal fluctuation range of hysteresis loop increases, and the unsteady characteristics of lift coefficient is aggravated in the pitch oscillation process of the airfoil. In addition, the fluctuation characteristics of lift coefficient caused by turbulence is more significant at small average angles of attack than those at large average angles of attack. The influence of turbulence on the surface pressure fluctuation is mainly located in the leading edge region of the airfoil, and the fluctuation pressure at the leading edge point has a strong response to the turbulent flow. Going back along the chord of the airfoil, the response of the fluctuation pressure on the airfoil surface to the turbulent flow weakens gradually.
关键词
风力机 /
翼型 /
湍流 /
大涡模拟 /
空气动力学
Key words
wind turbines /
airfoils /
turbulence /
large eddy simulation /
aerodynamics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李银然,赵丽,李德顺,等. 偏航工况下叶片翼型动态特性研究[J]. 太阳能学报, 2022, 43(7): 326-333.
LI Y R, ZHAO L, LI D S, et al.Study on dynamic characteristics of blade airfoil under yaw condition[J]. Acta energiae solaris sinica, 2022, 43(7): 326-333.
[2] 王友进, 闫超, 周涛. 不同厚度翼型动态失速涡运动数值研究[J]. 北京航空航天大学学报, 2006, 32(2): 153-157.
WANG Y J, YAN C, ZHOU T.Numerical investigation of dynamic stall vortex movement of different-thickness airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(2): 153-157.
[3] YU G H, ZHU X C, DU Z H.Numerical simulation of a wind turbine airfoil: dynamic stall and comparison with experiments[J]. Proceedings of the institution of mechanical engineers, part A: journal of power and energy, 2010, 224(5): 657-677.
[4] 吉正杰, 张锦, 殷玉枫, 等. 风力机翼型在偏航载荷下的复合运动的动态失速分析[J]. 太阳能学报,2021,42(6): 377-384.
JI Z J, ZHANG J, YIN Y F, et al.Dynamic stall analysis of compound motion of wind turbine airfoil under yaw load[J]. Acta energiae solaris sinica, 2021, 42(6): 377-384.
[5] MULLENERS K, RAFFEL M.The onset of dynamic stall revisited[J]. Experiments in fluids, 2012, 52(3): 779-793
[6] ROBERTSON A, SETHURAMAN L, JONKMAN J M. Assessment of wind parameter sensitivity on extreme and fatigue wind turbine loads[C]//Proceedings of the2018 Wind Energy Symposium. Kissimmee, Florida,2018: AIAA2018-1728.
[7] DIMITROV N, NATARAJAN A, MANN J.Effects of normal and extreme turbulence spectral parameters on wind turbine loads[J]. Renewable energy, 2017, 101: 1180-1193.
[8] DAI J C, YANG X, HU W, et al.Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149: 684-696.
[9] CHAMORRO L P, LEE S J, OLSEN D, et al.Turbulence effects on a full-scale 2.5 MW horizontal-axis wind turbine under neutrally stratified conditions[J]. Wind energy, 2015, 18(2): 339-349.
[10] KELLEY N D, JONKMAN B J, SCOTT G N, et al.Impact of coherent turbulence on wind turbine aeroelastic response and its simulation[R]. National Renewable Energy Labatory(NREL), Golden, CO(United States), 2005.
[11] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464): eaau2027.
[12] LI Q, KAMADA Y, MAEDA T, et al.Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (part I: static pressure measurement)[J]. Energy, 2016, 111: 701-712.
[13] YANG Z Y.Large eddy simulation: past, present and the future[J]. Chinese journal of aeronautics, 2015, 28(1): 11-24.
[14] CALAF M, MENEVEAU C, MEYERS J.Large eddy simulation study of fully developed wind-turbine array boundary layers[J]. Physics of fluids, 2010, 22(1): 15110.
[15] AKBARI M H, PRICE S J.Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method[J]. Journal of fluids and structures, 2003, 17(6): 855-874.
[16] 李爽. 风力机翼型动态失速的模型及流动控制机制研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2021.
LI S.Study of dynamic stall model and flow control mechanism of wind turbine airfoil[D]. Beijing: University of Chinese Academy of Sciences(Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2021.
[17] 李银然. 外场环境中水平轴风力机叶片非定常气动特性研究[D]. 兰州: 兰州理工大学, 2019.
LI Y R.Research on unsteady aerodynamic characteristics of horizontal axis wind turbine blades in field environment[D]. Lanzhou: Lanzhou University of Technology, 2019.
[18] HAND M M, SIMMS D A, FINGERSH L J, et al.Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns[R]. National Renewable Energy Labatory, Golden, CO(US), 2001.
[19] ABOSHOSHA H, ELSHAER A, BITSUAMLAK G T, et al.Consistent inflow turbulence generator for les evaluation of wind-induced responses for tall buildings[J]. Journal of wind engineering and industrial aerodynamics, 2015, 142:198-216.
[20] KRAICHNAN R H.Diffusion by a random velocity field[J]. The physics of fluids, 1970, 13(1): 22-31.
[21] HUANG S H, LI Q S, WU J R.A general inflow turbulence generator for large eddy simulation[J]. Journal of wind engineering and industrial aerodynamics, 2010, 98(10/11): 600-617.
[22] 周桐. 大气边界层来流下的理想山地风场特性大涡模拟研究[D]. 北京: 北京交通大学, 2021.
ZHOU T.Effects of upstream atmospheric boundary layer flow on the wind fields over the idealized hill using large-eddy simulation[D]. Beijing: Beijing Jiaotong University, 2021.
基金
甘肃省优秀博士生项目(22JR5RA231); 甘肃省高等学校产业支撑计划项目(2022CYZC-27); 兰州理工大学优秀博士学位论文培育计划; 甘肃省教育厅:优秀研究生‘创新之星项目2022CXZX-433'