一种单相Quasi-Z源逆变器二次谐波电流抑制策略

刘欣, 高鑫波, 袁静

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 349-358.

PDF(4544 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4544 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 349-358. DOI: 10.19912/j.0254-0096.tynxb.2023-0319

一种单相Quasi-Z源逆变器二次谐波电流抑制策略

  • 刘欣, 高鑫波, 袁静
作者信息 +

SECOND HARMONIC CURRENT SUPPRESSION STRATEGY FOR SINGLE-PHASE QUASI-Z SOURCE INVERTER

  • Liu Xin, Gao Xinbo, Yuan Jing
Author information +
文章历史 +

摘要

为抑制单相qZSI直流侧二次谐波电流,提出一种基于虚拟阻抗的二次谐波电流抑制策略。该控制策略通过引入串联虚拟阻抗附加控制以提高单相qZSI在2f0处的闭环输出阻抗,用以有效抑制直流侧的二次谐波电流。同时,综合考虑二次谐波电流抑制要求以及保证系统稳定裕度等约束条件,提出该控制策略的闭环参数设计方法。最后通过数字仿真和基于RT-LAB的硬件在环仿真验证了所提二次谐波电流抑制策略以及其闭环参数设计方法的正确性。

Abstract

The second harmonic current in the DC link of single-phase quasi-Z-source inverter (qZSI) seriously affects the performance of the system and limits its application. Aiming at suppressing the second harmonic current at the DC side of single-phase qZSI, a new strategy based on virtual impedance is proposed. The control strategy increases the closed-loop output impedance of single-phase qZSI at 2f0 by introducing an additional control process of the serial virtual impedance to effectively reduce the second harmonic current contents at the DC side. At the same time, a closed-loop parameter design method of the control strategy is proposed considering the constraints of the second harmonic current suppression requirement and the stability margin of the system. Finally, the correctness of the second harmonic current suppression strategy and its closed-loop parameter design method proposed in this paper are verified by digital simulation and RT-LAB based hardware-in-the-loop simulation.

关键词

光伏发电 / 准Z源 / 逆变器 / 谐波分析 / 虚拟阻抗

Key words

pv power generation / quasi-Z source / inverter / harmonic analysis / virtual impedance

引用本文

导出引用
刘欣, 高鑫波, 袁静. 一种单相Quasi-Z源逆变器二次谐波电流抑制策略[J]. 太阳能学报. 2024, 45(6): 349-358 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0319
Liu Xin, Gao Xinbo, Yuan Jing. SECOND HARMONIC CURRENT SUPPRESSION STRATEGY FOR SINGLE-PHASE QUASI-Z SOURCE INVERTER[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 349-358 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0319
中图分类号: TM615   

参考文献

[1] 钱为, 徐政, 陈锐坚. 风光互补提水系统的研究与开发[J]. 太阳能学报, 2019, 40(9): 2479-2485.
QIAN W, XU Z, CHEN R J.Research and development of hybrid PV-wind pumping systems[J]. Acta energiae solaris sinica, 2019, 40(9): 2479-2485.
[2] NA T P, ZHANG Q F, DONG S, et al.A soft-switched modulation for a single-phase quasi-Z-source-integrated charger in electric vehicle application[J]. IEEE transactions on power electronics, 2020, 35(5): 4602-4612.
[3] 孟志强, 邵武, 唐杰, 等. 准Z源级联光伏并网逆变器功率平衡控制[J]. 太阳能学报, 2023, 44(1): 8-15.
MENG Z Q, SHAO W, TANG J, et al.Power balance control of quasi-Z source cascaded photovoltaic grid-connected inverter[J]. Acta energiae solaris sinica, 2023, 44(1): 8-15.
[4] 孟志强, 邵武, 唐杰, 等. 光伏准Z源H桥级联多电平逆变器并网调制技术[J]. 太阳能学报, 2022, 43(11): 50-59.
MENG Z Q, SHAO W, TANG J, et al.Grid-connected modulation technology of photovoltaic quasi-Z-source H-bridge cascaded multi-level inverter[J]. Acta energiae solaris sinica, 2022, 43(11): 50-59.
[5] HARB S, BALOG R S.Single-phase PWM rectifier with power decoupling ripple-port for double-line-frequency ripple cancellation[C]//2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Long Beach, CA, USA, 2013: 1025-1029.
[6] GEMMEN R S.Analysis for the effect of inverter ripple current on fuel cell operating condition[J]. Journal of fluids engineering, 2003, 125(3): 576-585.
[7] FONTES G, TURPIN C, ASTIER S, et al.Interactions between fuel cells and power converters: influence of current harmonics on a fuel cell stack[J]. IEEE transactions on power electronics, 2007, 22(2): 670-678.
[8] CHOI W, ENJETI P N, HOWZE J W.Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current[C]//Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC'04. Anaheim, CA, USA, 2004: 355-361.
[9] 刘邦银, 段善旭, 康勇. 单相单级并网光伏发电系统中二次功率扰动的分析与抑制[J]. 太阳能学报, 2008, 29(4): 407-411.
LIU B Y, DUAN S X, KANG Y.Analysis and suppression of the second power disturbance in single-phase single-stage photovoltaic grid-connected generation system[J]. Acta energiae solaris sinica, 2008, 29(4): 407-411.
[10] FEMIA N, PETRONE G, SPAGNUOLO G, et al.A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems[J]. IEEE transactions on industrial electronics, 2009, 56(11): 4473-4482.
[11] SULLIVAN C R, AWERBUCH J J, Latham A M.Decrease in photovoltaic power output from ripple: simple general calculation and the effect of partial shading[J]. IEEE transactions on power electronics, 2013, 28(2): 740-747.
[12] SUN D S, GE B M, YAN X Y, et al.Impedance design of quasi-Z source network to limit double fundamental frequency voltage and current ripples in single-phase quasi-Z source inverter[C]//2013 IEEE Energy Conversion Congress and Exposition. Denver, CO, USA, 2013: 2745-2750.
[13] LIU Y S, GE B M, ABU-RUB H, et al.Comprehensive modeling of single-phase quasi-Z-source photovoltaic inverter to investigate low-frequency voltage and current ripple[J]. IEEE transactions on industrial electronics, 2015, 62(7): 4194-4202.
[14] LIANG W H, LIU Y S, GE B M, et al.Double-line-frequency ripple model, analysis, and impedance design for energy-stored single-phase quasi-Z-source photovoltaic system[J]. IEEE transactions on industrial electronics, 2018, 65(4): 3198-3209.
[15] GE B M, LIU Y S, ABU-RUB H, et al.An active filter method to eliminate dc-side low-frequency power for a single-phase quasi Z-source inverter[J]. IEEE transactions on industrial electronics, 2016, 63(8): 4838-4848.
[16] LIU Y S, GE B M, ABU-RUB H.A model predictive control for low-frequency ripple power elimination of active power filter integrated single-phase quasi-Z-source inverter[C]//2017 IEEE International Conference on Industrial Technology (ICIT). Toronto, ON, Canada, 2017: 1540-1545.
[17] SINGH S A, AZEEZ N A, WILLIAMSON S S.Capacitance reduction in a single phase quasi Z-source inverter using a hysteresis current controlled active power filter[C]//2016 IEEE 25th International Symposium on Industrial Electronics(ISIE). Santa Clara, CA, USA: IEEE, 2016: 805-810.
[18] YU Y F, ZHANG Q F, LIANG B, et al.Single-phase Z-source inverter: analysis and low-frequency harmonics elimination pulse width modulation[C]//2011 IEEE Energy Conversion Congress and Exposition. Phoenix, AZ, USA, 2011: 2260-2267.
[19] GE B M, LIU Y S, ABU-RUB H, et al.Current ripple damping control to minimize impedance network for single-phase quasi-Z source inverter system[J]. IEEE transactions on industrial informatics, 2016, 12(3): 1043-1054.
[20] LIU Y S, GE B M, ABU-RUB H, et al.An effective control method for quasi-Z-source cascade multilevel inverter-based grid-tie single-phase photovoltaic power system[J]. IEEE transactions on industrial informatics, 2014, 10(1): 399-407.
[21] 张力. 两级式单相变换器的二次谐波电流抑制技术[D].南京: 南京航空航天大学, 2017.
ZHANG L.Second harmonic current reduction techniques for two-stage single-phase converters[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.

PDF(4544 KB)

Accesses

Citation

Detail

段落导航
相关文章

/