基于液氢储运的超低温不锈钢微观组织演变与力学性能研究进展

程旺军, 崔栋栋, 孙耀宁, 曾月

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 117-124.

PDF(4422 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4422 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 117-124. DOI: 10.19912/j.0254-0096.tynxb.2023-0320

基于液氢储运的超低温不锈钢微观组织演变与力学性能研究进展

  • 程旺军1,2, 崔栋栋1, 孙耀宁1, 曾月1
作者信息 +

RESEARCH PROGRESS OF MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF ULTRA-LOW TEMPERATURE STAINLESS STEEL BASED ON LIQUID HYDROGEN STORAGE AND TRANSPORTATION

  • Cheng Wangjun1,2, Cui Dongdong1, Sun Yaoning1, Zeng Yue1
Author information +
文章历史 +

摘要

针对不锈钢在低温服役过程中面临高强低韧、低耐磨以及氢脆等一系列问题,阐述3种典型的氢脆理论,并分析不锈钢超低温下材料化学成分、应变量和应变速率等参量对其力学性能的影响规律,从微观角度明晰不锈钢超低温下的组织演变机制,揭示位错组态、滑移带、机械孪晶、奥氏体相、马氏体相的变化与力学性能改变的内在联系,对改善加工工艺、调控材料化学成分比例以及减小晶粒尺寸3种强化手段进行机理分析。最后介绍不锈钢在氢能储运领域中的典型应用以及未来发展趋势。

Abstract

The stainless steel faces a series of problems such as high strength、low toughness、low wear resistance and hydrogen embrittlement in the process of ultra-low temperature service. Three typical hydrogen embrittlement theories were described. The influence of chemical composition, deformation amount and strain rate on mechanical properties of stainless steel was analyzed at ultra-low temperature conditions. The mechanism of microstructure evolution of stainless steels was clarified at ultra-low temperature conditions. The interrelationship between microstructure and mechanical properties was revealed regarding dislocation configuration, slip band, mechanical twins, austenitic and martensitic phases. Moreover, the mechanism analyses were carried out by improving the processing technology, adjusting the chemical composition ratio, and reducing the grain size. Finally, typical application and future development of stainless steels were discussed in hydrogen energy storage and transportation.

关键词

氢能 / 液氢 / 不锈钢 / 力学性能 / 微观组织 / 马氏体相变 / 超低温

Key words

hydrogen energy / liquid hydrogen / stainless steel / mechanical properties / microstructure / martensitic transformation / ultra-low temperature

引用本文

导出引用
程旺军, 崔栋栋, 孙耀宁, 曾月. 基于液氢储运的超低温不锈钢微观组织演变与力学性能研究进展[J]. 太阳能学报. 2024, 45(6): 117-124 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0320
Cheng Wangjun, Cui Dongdong, Sun Yaoning, Zeng Yue. RESEARCH PROGRESS OF MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF ULTRA-LOW TEMPERATURE STAINLESS STEEL BASED ON LIQUID HYDROGEN STORAGE AND TRANSPORTATION[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 117-124 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0320
中图分类号: TG142.71   

参考文献

[1] 苗安康, 袁越, 吴涵, 等. “双碳” 目标下绿色氢能技术发展现状与趋势研究[J]. 分布式能源, 2021, 6(4): 15-24.
MIAO A K, YUAN Y, WU H, et al.Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(4): 15-24.
[2] 李建林, 梁忠豪, 梁丹曦, 等. “双碳” 目标下绿氢制备及应用技术发展现状综述[J]. 分布式能源, 2021, 6(4): 25-33.
LI J L, LIANG Z H, LIANG D X, et al.Overview of development status of green hydrogen production and application technology under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(4): 25-33.
[3] 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478.
CAO J W, QIN X F, GENG G, et al.Current status and prospects of hydrogen storage and transportation technology[J]. Acta petrolei sinica (petroleum processing section), 2021, 37(6): 1461-1478.
[4] 扬帆, 张超, 张博超, 等. 大型液氢储罐内罐材料研究与应用进展[J]. 太阳能学报, 2023, 44(10): 557-563.
YANG F, ZHANG C, ZHANG B C, et al.Research and application progress of inner tank materials for large liquid hydrogen storage tanks[J]. Acta energiae solaris sinica, 2023, 44(10): 557-563.
[5] 王亚军, 王儒文, 贺启林, 等. 0Cr18Ni9不锈钢材料常低温断裂行为研究[J]. 低温工程, 2018(1): 24-30, 56.
WANG Y J, WANG R W, HE Q L, et al.Investigation on fracture behavior of 0Cr18Ni9 austenitic stainless steel at normal and low temperatures[J]. Cryogenics, 2018(1): 24-30, 56.
[6] 胡凯, 武明雨, 李运刚. 马氏体不锈钢的研究进展[J]. 铸造技术, 2015, 36(10): 2394-2400.
HU K, WU M Y, LI Y G.Research progress of martensitic stainless steel[J]. Foundry technology, 2015, 36(10): 2394-2400.
[7] 陈瑞, 郑津洋, 徐平, 等. 金属材料常温高压氢脆研究进展[J]. 太阳能学报, 2008, 29(4): 502-508.
CHEN R, ZHENG J Y, XU P, et al.Hydrogen embrittlement of metallic materials in high-pressure hydrogen at normal temperature[J]. Acta energiae solaris sinica, 2008, 29(4): 502-508.
[8] PFEIL L B.The effect of occluded hydrogen on the tensile strength of iron[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1926, 112(760): 182-195.
[9] ORIANI R A.A mechanistic theory of hydrogen embrittlement of steels[J]. Berichte der bunsengesellschaft für physikalische chemie, 1972, 76(8): 848-857.
[10] 范宇恒. 不锈钢微观组织结构对其氢脆性能的影响[D]. 合肥: 中国科学技术大学, 2019.
FAN Y H.Effect of microstructure on hydrogen embrittlement of stainless steel[D]. Hefei: University of Science and Technology of China, 2019.
[11] 付雷, 单龙, 温玉霜, 等. 氢致裂纹中氢压的理论表征及有限元求解方法[J]. 焊接学报, 2019, 40(11): 8-12, 161.
FU L, SHAN L, WEN Y S, et al.Characterization of hydrogen gas pressure inner hydrogen induced crack cavity using fracture mechanics theory and finite element method[J]. Transactions of the China Welding Institution, 2019, 40(11): 8-12, 161.
[12] 胡怡, 马克, 李子凌, 等. 氢对SAF2205钢低温塑性的损伤行为[J]. 东北重型机械学院学报, 1997, 21(2): 43-47.
HU Y, MA K, LI Z L, et al.Damage behavior of hydrogen on the low-temperature plasticity of SAF2205 steel[J]. Journal of Northeast Heavy Machinery Institute, 1997, 21(2): 43-47.
[13] 余存烨. 奥氏体不锈钢氢脆[J]. 全面腐蚀控制, 2015, 29(8): 11-15.
YU C Y.Hydrogen environment on austenite stainless steel[J]. Total corrosion control, 2015, 29(8): 11-15.
[14] 郑津洋, 李雅娴, 徐平, 等. 应变强化用奥氏体不锈钢力学性能影响因素[J]. 解放军理工大学学报(自然科学版), 2011, 12(5): 512-519.
ZHENG J Y, LI Y X, XU P, et al.Influence factors of mechanical property for strain strengthening austenitic stainless steel[J]. Journal of PLA University of Science and Technology (natural science edition), 2011, 12(5): 512-519.
[15] 徐桂芳, 徐文慧, 罗锐, 等. 高氮低镍奥氏体不锈钢的低温性能与组织稳定性[J]. 金属热处理, 2017, 42(2): 1-6.
XU G F, XU W H, LUO R, et al.Low-temperature mechanical properties and microstructural stability of high-nitrogen and low-nickel austenitic stainless steel[J]. Heat treatment of metals, 2017, 42(2): 1-6.
[16] CAI X, HU X Q, ZHENG L G, et al.Redistribution of C and N atoms in high nitrogen martensitic stainless steel during cryogenic treatment[J]. Acta metallurgica sinica (English letters), 2022, 35(4): 591-595.
[17] 徐明舟, 王立军, 王建军, 等. 18%Cr-12%Mn-0.55%N高氮奥氏体不锈钢低温性能与组织稳定性[J]. 东北大学学报(自然科学版), 2010, 31(1): 47-50, 55.
XU M Z, WANG L J, WANG J J, et al.Low-temperature mechanical properties and microstructural stability of 18%Cr-12%Mn-0.55%N high-nitrogen austenitic stainless steel[J]. Journal of Northeastern University (natural science), 2010, 31(1): 47-50, 55.
[18] ZHANG H C, HUANG C J, HUANG R J, et al.Influence of pre-strain on cryogenic tensile properties of 316LN austenitic stainless steel[J]. Cryogenics, 2020, 106: 103058.
[19] TOPPO V, SINGH S B, RAY K K.Wear resistance of annealed plain carbon steels in pre-strained condition[J]. Wear, 2009, 266(9/10): 907-916.
[20] 陈勇, 陆戴丁, 孔韦海. 应变强化及深冷对奥氏体不锈钢组织性能的影响[J]. 材料热处理学报, 2015, 36(S2): 75-80.
CHEN Y, LU D D, KONG W H.Effects of cold stretching and cryogenic temperature on structure and property of austenitic stainless steel[J]. Transactions of materials and heat treatment, 2015, 36(S2): 75-80.
[21] WU S S, XIN J J, XIE W, et al.Mechanical properties and microstructure evolution of cryogenic pre-strained 316LN stainless steel[J]. Cryogenics, 2022, 121: 103388.
[22] LI X F, CHEN J, YE L Y, et al.Influence of strain rate on tensile characteristics of SUS304 metastable austenitic stainless steel[J]. Acta metallurgica sinica (English letters), 2013, 26(6): 657-662.
[23] 李会鹏, 熊毅, 路妍, 等. 应变速率对低温拉伸316LN奥氏体不锈钢微观组织和力学性能的影响[J]. 材料研究学报, 2018, 32(2): 105-111.
LI H P, XIONG Y, LU Y, et al.Effect of strain rate on microstructure evolution and mechanical property of 316LN austenitic stainless steel at cryogenic temperature[J]. Chinese journal of materials research, 2018, 32(2): 105-111.
[24] PARK W S, YOO S W, KIM M H, et al.Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments[J]. Materials & design, 2010, 31(8): 3630-3640.
[25] YANG Z, LIU Z, LIANG J.Elucidating the role of secondary cryogenic treatment on mechanical properties of a martensitic ultra-high strength stainless steel[J]. Materials characterization, 2021, 178: 111277.
[26] 龚娜, 武会宾, 曹嘉明, 等. 冷变形对304奥氏体不锈钢组织和性能的影响[J]. 热加工工艺, 2018, 47(4): 62-66.
GONG N, WU H B, CAO J M, et al.Effect of cold deformation on structure and properties of 304 austenitic stainless steel[J]. Hot working technology, 2018, 47(4): 62-66.
[27] SABOONI S, KARIMZADEH F, ENAYATI M H, et al.The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel[J]. Materials science and engineering: A, 2015, 636: 221-230.
[28] CHENG W J, CUI D D, SUN Y N, et al.Cryogenic work-hardening behavior for a metastable austenitic stainless steel at liquid nitrogen temperature[J]. Materials science and engineering: A, 2022, 861: 144352.
[29] ZHENG C S, LIU C J, REN M H, et al.Microstructure and mechanical behavior of an AISI 304 austenitic stainless steel prepared by cold-or cryogenic-rolling and annealing[J]. Materials science and engineering: A, 2018, 724: 260-268.
[30] CUI P C, XING G S, NONG Z S, et al.Recent advances on composition-microstructure-properties relationships of precipitation hardening stainless steel[J]. Materials, 2022, 15(23): 8443.
[31] FU R D, QIU L, WANG T S, et al.Cryogenic deformation microstructures of 32Mn-7Cr-1Mo-0.3N austenitic steels[J]. Materials characterization, 2005, 55(4/5): 355-361.
[32] WANG Y H, ZHANG Y B, GODFREY A, et al.Cryogenic toughness in a low-cost austenitic steel[J]. Communications materials, 2021, 2: 44.
[33] 赵东升, 窦钧, 刘玉君. LNG/LPG船耐低温材料的焊接发展综述[J]. 船舶, 2019, 30(3): 47-56.
ZHAO D S, DOU J, LIU Y J.Summary of welding development of low-temperature-resistant materials used in LNG/LPG carriers[J]. Ship & boat, 2019, 30(3): 47-56.
[34] KIM B C, YOON S H, LEE D G.Pressure resistance of the corrugated stainless steel membranes of LNG carriers[J]. Ocean engineering, 2011, 38(4): 592-608.
[35] 闫喻婷. 氢气储运方式的经济性对比研究[D]. 武汉: 华中科技大学, 2021.
YAN Y T.Comparative study on the economy of hydrogen storage and transportation methods[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[36] 邵艳波, 宋义伟, 张志贵, 等. 氢气低温液化与储运技术进展[J]. 低温与超导, 2023, 51(6): 55-61.
SHAO Y B, SONG Y W, ZHANG Z G, et al.Research progress on liquefaction storage and transportation technologies of hydrogen[J]. Cryogenics & superconductivity, 2023, 51(6): 55-61.
[37] 王莹. 70 MPa车载储氢气瓶供氢系统及快充过程研究[D]. 大连: 大连理工大学, 2019.
WANG Y.Study on hydrogen supply system and fast charging process of 70 MPa vehicle-mounted hydrogen storage bottle[D]. Dalian: Dalian University of Technology, 2019.
[38] LI J Q, XU H, WANG J B, et al.A review of methods to study the fatigue life of nodes connecting marine composite hydrogen storage tanks to ships under the action of external forces[J]. Journal of energy storage, 2023, 72: 108367.
[39] 何远新, 周伟明, 甘智华, 等. 40英尺液化天然气铁路及其联运罐式集装箱静态蒸发率计算及测试研究[J]. 低温工程, 2020(2): 52-56.
HE Y X, ZHOU W M, GAN Z H, et al.Calculation and experiment on static evaporation rate of 40-foot LNG container tank for railway and its intermodal application[J]. Cryogenics, 2020(2): 52-56.
[40] 杨晓旭. 液氢储罐无损储运特性研究[D]. 镇江: 江苏科技大学, 2022.
YANG X X.Study on nondestructive storage and transportation characteristics of liquid hydrogen storage tank[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022.

基金

新疆维吾尔自治区自然科学基金(2022D01C653); 中国博士后科学基金面上资助项目(2022M722666); 新疆维吾尔自治区 “天池英才”高层次人才项目(51052300536)

PDF(4422 KB)

Accesses

Citation

Detail

段落导航
相关文章

/