将仿生鸟喙式结构引入涡流发生器中,结合Fluent软件在Re=6000~26800范围内对其换热能力j、流动阻力f与综合热性能CPEC变化规律进行研究。结果表明:鸟喙式涡流发生器是一种高换热低流阻的高效换热元件,在Re=13000时CPEC较传统矩形翼提高62.35%。此外其综合热性能随着迎流攻角α的增大先增大后减小,在α=30°时达到最大,较空通道提高26.83%。增大斜截角度β是降低流动阻力的一种有效方式,β=24°的结构较无截角结构流阻f降低47.03%。
Abstract
Installing vortex generators on the fins can significantly improve the shell-side heat transfer efficiency of shell-and-tube heat exchangers, but the improvement of heat transfer capacity often leads to the increase of flow resistance. Therefore, most of the traditional vortex generators have the problem of low comprehensive efficiency with high heat transfer and high flow resistance. In this study, the bionic bird beak structure was introduced into the vortex generator, and the heat transfer capacity j, flow resistance f and comprehensive thermal performance CPEC were studied in the range of Re=6000~26800 by Fluent software. The results show that the bird-beak vortex generator is an efficient heat transfer element with high heat transfer and low flow resistance. When Re=13000, the CPEC is 62.35% higher than that of the traditional rectangular wing. In addition, its heat transfer capacity will increase first and then decrease with the increase of the angle of attack α, reaching the maximum at α=30°, which is 26.83% higher than that of the empty channel. Increasing the oblique cut angle β is an effective way to reduce the flow resistance. The flow resistance f of the structure withβ=24° is 47.03% lower than that of the structure without cut angle.
关键词
数值模拟 /
换热性能 /
导热系数 /
涡流发生器 /
综合热性能
Key words
numerical simulation /
heat transfer performance /
thermal conductivity /
eddy current generator /
comprehensive thermal performance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡中停, 余鹏坤, 陈明想, 等. 基于微通道板强化换热的多功能百叶集热墙模块实验研究[J]. 太阳能学报, 2022, 43(2): 246-249.
HU Z T, YU P K, CHEN M X, et al.Experiment analysis of multi-functional Trombe wall modul based on enhanced heat transfer micro-channel plate[J]. Acta energiae solaris sinica, 2022, 43(2): 246-249.
[2] BERGLES A E.Some perspectives on enhanced heat transfer-second-generation heat transfer technology[J]. Journal of heat transfer, 1988, 110(4b): 1082-1096.
[3] LI X Z, WANG L, FENG R, et al.Study on shell side heat transport enhancement of double tube heat exchangers by twisted oval tubes[J]. International communications in heat and mass transfer, 2021, 124: 105273.
[4] 刘赟, 张传智, 董月. 基于场协同原理的微通道熔盐换热器传热强化[J]. 太阳能学报, 2023, 44(3): 509-515.
LIU Y, ZHANG C Z, DONG Y.Heat transfer enhancement of microchannel molten salt heat exchanger based on field synergy principle[J]. Acta energiae solaris sinica, 2023, 44(3): 509-515.
[5] 吴淑英, 聂昌达, 叶为标, 等. 圆管内置涡流发生器强化传热数值模拟[J]. 太阳能学报, 2019, 40(3): 756-765.
WU S Y, NIE C D, YE W B, et al.Numerical simulation on heat transfer enhancement of tube with vortex generator[J]. Acta energiae solaris sinica, 2019, 40(3): 756-765.
[6] ZHANG L, YAN X, ZHANG Y, et al.Heat transfer enhancement by streamlined winglet pair vortex generators for helical channel with rectangular cross section[J]. Chemical engineering and processing-process intensification, 2020, 147: 107788.
[7] ALIREZA G S, MALAN A W.Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with delta winglet-type vortex generators[J]. Facta universitatis, series: mechanical engineering, 2018, 16(2): 233.
[8] TANG L H, TAN S C, GAO P Z, et al.Parameters optimization of fin-and-tube heat exchanger with a novel vortex generator fin by taguchi method[J]. Heat transfer engineering, 2016, 37(3/4): 369-381.
[9] SINHA A, CHATTOPADHYAY H, IYENGAR A K, et al.Enhancement of heat transfer in a fin-tube heat exchanger using rectangular winglet type vortex generators[J]. International journal of heat and mass transfer, 2016, 101: 667-681.
[10] 徐志明, 韩志敏, 沈艺雯, 等. 矩形通道中不同楞型涡流发生器的传热与阻力特性[J]. 太阳能学报, 2017, 38(5): 1233-1239.
XU Z M, HAN Z M, SHEN Y W, et al.Heat transfer and flow resistance characteristics of different corrugated vortex generator in rectangular channel[J]. Acta energiae solaris sinica, 2017, 38(5): 1233-1239.
[11] 江瑞芳, 赵振宙, 刘惠文, 等. 涡流发生器安装参数对风力机翼段动态失速影响[J]. 太阳能学报, 2023, 44(1): 218-225.
JIANG R F, ZHAO Z Z, LIU H W, et al.Influence of vortex generators installation parameters on dynamic stall of wind turbine airfoil[J]. Acta energiae solaris sinica, 2023, 44(1): 218-225.
[12] RAMANATHAN S, THANSEKHAR M R, KANNA P R, et al.A new method of acquiring perquisites of recirculation and vortex flow in sudden expansion solar water collector using vortex generator to augment heat transfer[J]. International journal of thermal sciences, 2020, 153: 106346.
[13] LUO L, WEN F B, WANG L, et al.On the solar receiver thermal enhancement by using the dimple combined with delta winglet vortex generator[J]. Applied thermal engineering, 2017, 111: 586-598.
[14] 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京: 中国电力出版社, 2004.
GUO Z Y, HUANG S Y.Field synergy principle and new technology of enhancing heat transfer[M]. Beijing: China Electric Power Press, 2004.
[15] 叶秋玲, 周国兵, 程金明, 等. 斜截半椭圆柱面涡流发生器强化换热和压降特性的试验研究[J]. 机械工程学报, 2010, 46(16): 162-169.
YE Q L, ZHOU G B, CHENG J M, et al.Experimental study of heat transfer enhancement and pressure drop characteristics of oblique-cut semi-elliptic cylinder shell vortex generators[J]. Journal of mechanical engineering, 2010, 46(16): 162-169.
[16] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2010.
YANG S M, TAO W Q.Heat transfer[M]. Fourth edition. Beijing: Higher Education Press, 2010.