对比3类LSTM功率预测方法的误差以评价业务气象预报在光伏功率预测中的作用,及训练集、测试集的不同划分对预测精度的影响。这3类功率预测方法分别是:只使用光伏功率、使用光伏功率及气象观测、使用光伏功率及气象预报。气象预报因子使用了与光伏功率相关性最高的总辐照度。分析时间段为2020年1月1日—6月30日,气象预报来自于ECMWF和NOAA/NCEP。结果表明,对于长度有限的资料,训练集、测试集的不同划分对预测模型精度会产生一定的影响。如果可使用总辐照度的观测,则短期功率预测的相对误差可降低约2.3%。与只使用光伏功率相比,既使用光伏功率又使用气象预报,短期功率预测相对误差降低约2.1%。与NOAA/NCEP气象预报相比,ECMWF气象预报明显降低了功率预测的误差。相比于只使用光伏功率,增加气象预报可提高预测精度。
Abstract
The errors of three types of LSTM power prediction methods were compared to evaluate the role of operational weather forecast in photovoltaic power prediction and the influence of different divisions of training and test sets on prediction accuracy. The three types of power prediction methods are: using photovoltaic power only, using photovoltaic power and meteorological observation, and using photovoltaic power and meteorological forecast. The meteorological variable used is total irradiance, which has the highest correlation coefficient with photovoltaic power. The analysis period is from January 1 to June 30, 2020, with weather forecasts from the ECMWF and NOAA/NCEP. The results show that, for the data with limited time length, the different division of the training and test sets will have influence on the accuracy of the prediction model. If total irradiance observation is used, the relative error of short-term power predictions can be reduced by about 2.3%. Compared with only using photovoltaic power, the relative error of short-term power prediction is reduced by about 2.1% by using both photovoltaic power and meteorological forecast. Compared with NOAA/NCEP weather forecast, ECMWF weather forecast significantly reduces the error of power prediction. Compared with only using photovoltaic power, using meteorological forecast data can enhance the accuracy of photovoltaic power prediction.
关键词
长短期记忆网络 /
光伏发电 /
功率预测 /
辐照度
Key words
long short-term memory(LSTM) /
photovoltaic power generation /
power prediction /
irradiance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丁明, 徐宁舟. 基于马尔可夫链的光伏发电系统输出功率短期预测方法[J]. 电网技术, 2011, 35(1): 152-157.
DING M, XU N Z.A method to forecast short-term output power of photovoltaic generation system based on Markov chain[J]. Power system technology, 2011, 35(1): 152-157.
[2] 张佳伟, 张自嘉. 基于PSO-BP神经网络的短期光伏系统发电预测[J]. 可再生能源, 2012, 30(8): 28-32.
ZHANG J W, ZHANG Z J.Short-term photovoltaic system power forecasting based on PSO-BP neural network[J]. Renewable energy resources, 2012, 30(8): 28-32.
[3] 于秋玲, 许长清, 李珊, 等. 基于模糊聚类和支持向量机的短期光伏功率预测[J]. 电力系统及其自动化学报, 2016, 28(12): 115-118, 129.
YU Q L, XU C Q, LI S, et al.Application of fuzzy clustering algorithm and support vector machine to short-term forecasting of PV power[J]. Proceedings of the CSU-EPSA, 2016, 28(12): 115-118, 129.
[4] 韩超杰. 光伏发电系统功率预测方法的研究[D]. 郑州: 华北水利水电大学, 2021.
HAN C J.Research on power prediction method of photovoltaic power generation system[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.
[5] 曹英丽, 方诗琦, 王洋, 等. 分布式光伏发电特性与气象影响因子诊断分析[J]. 沈阳农业大学学报, 2018, 49(3): 363-370.
CAO Y L, FANG S Q, WANG Y, et al.Diagnostic analysis of distributed photovoltaic power characteristics and the impact of meteorological factors[J]. Journal of Shenyang Agricultural University, 2018, 49(3): 363-370.
[6] 李博涵. 基于相似时和LSTM神经网络的短期光伏功率预测[D]. 南宁: 广西大学, 2020.
LI B H.Short-term photovoltaic power prediction based on similar time and LSTM neural network[D].Nanning: Guangxi University, 2020.
[7] 邓心怡, 黎北梅, 王晓春, 等. 2019年8—10月长江口近岸海上风电场风浪预报[J]. 海洋预报, 2021, 38(4): 45-52.
DENG X Y, LI B M, WANG X C, et al.Wind and ocean wave forecasts for the offshore wind farms near the Changjiang River estuary from August to October 2019[J]. Marine forecasts, 2021, 38(4): 45-52.
[8] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[9] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[10] 李相俊, 许格健. 基于长短期记忆神经网络的风力发电功率预测方法[J]. 发电技术, 2019, 40(5): 426-433.
LI X J, XU G J.Wind power prediction method based on long short-term memory neural network[J]. Power generation technology, 2019, 40(5): 426-433.
基金
大学生创新创业训练计划(XJDC202210300134)