海上风电嵌岩群桩基础竖向承载特性模型试验研究

刘欣怡, 胡中波, 王钦科, 田德帅, 刘畅博, 李阔

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 637-645.

PDF(2959 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2959 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 637-645. DOI: 10.19912/j.0254-0096.tynxb.2023-0349

海上风电嵌岩群桩基础竖向承载特性模型试验研究

  • 刘欣怡1,2, 胡中波1, 王钦科3, 田德帅1, 刘畅博1, 李阔1
作者信息 +

MODEL EXPERIMENTAL STUDY ON AXIAL BEARING PROPERTIES OF ROCK-SOCKETED PILE GROUP FOR OFFSHORE WIND TURBINE

  • Liu Xinyi1,2, Hu Zhongbo1, Wang Qinke3, Tian Deshuai1, Liu Changbo1, Li Kuo1
Author information +
文章历史 +

摘要

以福建海域风电场中使用钢管-混凝土组合桩的嵌岩群桩高承台基础为研究对象,通过室内缩尺模型试验的方法,对嵌岩群桩基础的竖向抗压承载特性和破坏机理进行研究,并与嵌岩单桩基础进行对比。研究结果表明:加载前期,钢管-混凝土组合桩群桩之间的覆盖层和基岩与桩作为一个整体共同承载来自上部的下压荷载,这导致了群桩的桩端轴力增加幅度相对单桩较小,以及群桩的桩端阻力发挥受限,向下的应力较单桩更难扩散;加载后期,群桩之间出现连接裂缝,削弱了桩间土的承载能力,使得群桩的桩端阻力和端阻比增加明显。此外,为避免群桩效应的影响,钢管-混凝土组合桩的桩间距应在3倍桩直径以上。

Abstract

Taking the high cap foundation of rock-socketed pile group using concrete filled steel tubular composite pile in Fujian offshore wind farm as the research object, the vertical compressive bearing characteristics and failure mechanism of rock-socketed pile group were studied by scale model test, and compared with rock-socketed single pile. The results show that in the early stage of loading, the overburden and bedrock between the concrete filled steel tubular composite pile group and the pile as a whole bear the upper compressive load together, which leads to the smaller increase of the axial force at the pile end of the pile group than that of the single pile, and the resistance at the pile end is limited, the downward stress is more difficult to diffuse than that of the single pile. In the later stage of loading, the connection cracks appear between the piles, which weakens the bearing capacity of the soil between the piles, and makes the pile end resistance and end resistance ratio of the pile group increase obviously. In addition, in order to avoid the influence of pile group effect, the pile spacing of concrete filled steel tubular composite piles should be above 3 times the pile diameter.

关键词

海上风电 / 桩基础 / 承载力 / 海上 / 嵌岩群桩

Key words

offshore wind power / pile foundations / bearing capacity / wind farm / rock-socketed pile group

引用本文

导出引用
刘欣怡, 胡中波, 王钦科, 田德帅, 刘畅博, 李阔. 海上风电嵌岩群桩基础竖向承载特性模型试验研究[J]. 太阳能学报. 2024, 45(6): 637-645 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0349
Liu Xinyi, Hu Zhongbo, Wang Qinke, Tian Deshuai, Liu Changbo, Li Kuo. MODEL EXPERIMENTAL STUDY ON AXIAL BEARING PROPERTIES OF ROCK-SOCKETED PILE GROUP FOR OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 637-645 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0349
中图分类号: P752   

参考文献

[1] HE R, JI J, ZHANG J S, et al.Dynamic impedances of offshore rock-socketed monopiles[J]. Journal of marine science and engineering, 2019, 7(5): 134.
[2] YANG J B, LIU Q Y, LI X, et al.Overview of wind power in China: status and future[J]. Sustainability, 2017, 9(8): 1454.
[3] 张艺三, 胡松, 王芳. 计及恶劣天气约束的海上风能波浪能资源分布研究[J]. 太阳能学报, 2022, 43(12): 200-205.
ZHANG Y S, HU S, WANG F.Distribution of offshore wind and wave energy resources considering severe weather constraints[J]. Acta energiae solaris sinica, 2022, 43(12): 200-205.
[4] ZHANG J H, WANG H.Development of offshore wind power and foundation technology for offshore wind turbines in China[J]. Ocean engineering, 2022, 266: 113256.
[5] 朱斌, 姜英伟, 陈仁朋, 等. 海上风电机组群桩基础关键问题的初步研究[J]. 岩土工程学报, 2011, 33(S1): 98-103.
ZHU B, JIANG Y W, CHEN R P, et al.Investigation on pile group foundations for offshore wind turbines[J]. Chinese journal of geotechnical engineering, 2011, 33(S1): 98-103.
[6] 孙明明, 李昕, 李炜. 海上风力机高桩承台基础反应特性研究[J]. 太阳能学报, 2020, 41(7): 265-273.
SUN M M, LI X, LI W.Study on response of offshore wind turbine with high-pile cap foundation[J]. Acta energiae solaris sinica, 2020, 41(7): 265-273.
[7] 冯忠居, 胡海波, 贾明晖, 等. 钢管埋深对钢管混凝土复合桩竖向承载特性的影响[J]. 土木工程学报, 2019, 52(S2): 110-116.
FENG Z J, HU H B, JIA M H, et al.Influence of pipe bury depth on vertical bearing characteristics of concrete filled steel tubular composite pile[J]. China civil engineering journal, 2019, 52(S2): 110-116.
[8] 冯忠居, 王富春, 张其浪, 等. 钢管混凝土复合桩竖向承载特性离心模型试验[J]. 长安大学学报(自然科学版), 2018, 38(2): 42-49.
FENG Z J, WANG F C, ZHANG Q L, et al.Centrifuge model tests of vertical bearing characteristics of steel pipe concrete composite pile[J]. Journal of Chang'an University (natural science edition), 2018, 38(2): 42-49.
[9] 冯忠居, 席称心, 张其浪, 等. 钢管埋深对钢管混凝土复合桩竖向承载特性影响研究[J]. 公路, 2018, 63(1): 70-75.
FENG Z J, XI C X, ZHANG Q L, et al.Influence of pipe bury depth on vertical bearing characteristics of steel pipe concrete composite pile[J]. Highway, 2018, 63(1): 70-75.
[10] 刘明维, 朱晨浩, 阿比尔的, 等. 钢管混凝土嵌岩桩钢-混凝土联合承载规律试验研究[J]. 水利水运工程学报, 2021(3): 9-15.
LIU M W, ZHU C H, ABI ED, et al.Experimental research of steel-concrete joint bearing law of steel-concrete rock-socketed piles[J]. Hydro-science and engineering, 2021(3): 9-15.
[11] 汪承志, 刘建国, 石兴勇. 钢护筒与钢筋混凝土联合受力的内河大水差架空直立式码头力学特性分析[J]. 水运工程, 2012(6): 115-120.
WANG C Z, LIU J G, SHI X Y.Mechanical property of steel tube-R. C. concrete combined bearing inland overhead vertical wharf 11, 23[J]. Port & waterway engineering, 2012(6): 115-120.
[12] 聂建国, 王宇航, 樊健生. 钢管混凝土柱在纯扭和压扭荷载下的抗震性能研究[J]. 土木工程学报, 2014, 47(1): 47-58.
NIE J G, WANG Y H, FAN J S.Study on seismic behavior of concrete filled steel tube columns under pure torsion and compression-torsion combined action[J]. China civil engineering journal, 2014, 47(1): 47-58.
[13] 聂建国, 王宇航, 樊健生. 钢管混凝土柱轴压力-弯矩-扭矩空间复合受力拟静力试验研究[J]. 建筑结构学报, 2012, 33(9): 1-11.
NIE J G, WANG Y H, FAN J S.Experimental study on concrete filled steel tubular columns under combined compression, flexure and torsion[J]. Journal of building structures, 2012, 33(9): 1-11.
[14] 王宇航, 聂建国, 樊健生. 矩形钢管混凝土柱在扭矩作用下的截面剪应变场研究[J]. 工程力学, 2014, 31(5): 101-108, 119.
WANG Y H, NIE J G, FAN J S.Cross sectional shear strain distribution of rectangular concrete filled steel tube columns subjected to torsion[J]. Engineering mechanics, 2014, 31(5): 101-108, 119.
[15] 张小龙, 邢磊, 王丽, 等. 钢管混凝土嵌岩桩力学性能研究综述[J]. 科学技术与工程, 2020, 20(20): 7982-7990.
ZHANG X L, XING L, WANG L, et al.A review of studies on mechanical properties of concrete filled steel tubular rock-socketed piles[J]. Science technology and engineering, 2020, 20(20): 7982-7990.
[16] ACI. Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05)[S]. Farmington Hills (MI, USA): American Concrete Institute, 2005.
[17] Eurocode 4.EN 1994-1-1 Design of composite steel and concrete structures[S]. European Committee for Standardization: British Standards Institution, 2004.
[18] Recommendations AIJ.For design and construction of concrete filled steel tubular structures[S]. Tokyo: Architectural Institute of Japan, 1997.
[19] DL/T5085—202, 钢-混凝土组合结构设计规程[S].
DL/T5085—2021, Design specification for steel-concrete composite structure[S].

基金

中国电建集团成都院自主项目(P48521; P43919)

PDF(2959 KB)

Accesses

Citation

Detail

段落导航
相关文章

/