叶片失效条件下风电机组动力学响应数值模拟研究

牟哲岳, 孙勇, 王瑞良, 白聪儿, 林勇刚

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 510-517.

PDF(2980 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2980 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 510-517. DOI: 10.19912/j.0254-0096.tynxb.2023-0352

叶片失效条件下风电机组动力学响应数值模拟研究

  • 牟哲岳1,2, 孙勇1,2, 王瑞良1,2, 白聪儿1,2, 林勇刚3
作者信息 +

NUMERICAL SIMULATION FOR DYNAMIC RESPONSES OF WIND TURBINE UNDER BLADE FAILURE CONDITION

  • Mou Zheyue1,2, Sun Yong1,2, Wang Ruiliang1,2, Bai Conger1,2, Lin Yonggang3
Author information +
文章历史 +

摘要

研究叶片失效条件下风电机组整机动力学响应数值模拟方法,以NREL 5 MW机组为对象,基于Simpack软件,建立风电机组整机气-弹-控联合仿真模型,分析紧急停机措施下叶片失效机组的动力学响应特征。在此基础上,通过参数化分析揭示了叶片失效所在相位角、叶片失效长度、风速、湍流度、顺桨速率、反应时间等多种因素对于叶片失效条件下机组动力学响应的非线性影响规律。提出一种发电机扭矩随风轮转速下降的优化停机方案,通过数值模拟得到的机组动力学响应曲线验证了该方案的有效性。

Abstract

The simulation method for dynamic responses of wind turbine under blade failure condition is investigated. The combined simulation model with air-elastic-control coupling for NREL 5 MW wind turbine is established using multi-body dynamic simulation software Simpack. The characteristics of dynamic time-history responses of wind turbine when emergency stop under blade failure condition are analyzed. On this basis, the nonlinear influence law of azimuth, failure length, wind speed, turbulence intensity, pitch rate and reaction time on the dynamic responses of wind turbine under blade failure condition are researched. An optimel shutdown scheme for generator torque reduction with rotor speed is proposed, and the effectiveness is validated through the curve of dynamic responses of wind turbine acquired by numerical simulation.

关键词

风力机叶片 / 风电机组 / 失效分析 / 动力学响应 / 数值模拟

Key words

wind turbine blades / wind turbines / failure analysis / dynamic response / numerical simulation

引用本文

导出引用
牟哲岳, 孙勇, 王瑞良, 白聪儿, 林勇刚. 叶片失效条件下风电机组动力学响应数值模拟研究[J]. 太阳能学报. 2024, 45(6): 510-517 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0352
Mou Zheyue, Sun Yong, Wang Ruiliang, Bai Conger, Lin Yonggang. NUMERICAL SIMULATION FOR DYNAMIC RESPONSES OF WIND TURBINE UNDER BLADE FAILURE CONDITION[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 510-517 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0352
中图分类号: TH83   

参考文献

[1] WANG W J, XUE Y, HE C K, et al.Review of the typical damage and damage-detection methods of large wind turbine blades[J]. Energies, 2022, 15(15): 5672.
[2] 郭万龙. 大型风电机组叶片损坏原因及对策[J]. 电力安全技术, 2014, 16(5): 10-13.
GUO W L.Causes and countermeasures of blade damage of large wind turbine[J]. Electric safety technology, 2014, 16(5): 10-13.
[3] GWEC. Global wind report 2022[R]. 2022.
[4] 付德义, 张晓东, 王瑞明, 等. 特定场址条件下风电机组载荷适应性评估[J]. 太阳能学报, 2021, 42(6): 425-431.
FU D Y, ZHANG X D, WANG R M, et al.Wind turbine load adaptability assessment under specific site conditions[J]. Acta energiae solaris sinica, 2021, 42(6): 425-431.
[5] ABU S SHOHAG M, HAMMEL E C, OLAWALE D O, et al. Damage mitigation techniques in wind turbine blades: a review[J]. Wind engineering, 2017, 41(3): 185-210.
[6] CUI H Y, DING N, HONG M.Crack diagnosis of wind turbine blades based on EMD method[J]. IOP conference series: materials science and engineering, 2016, 157: 012003.
[7] PACHECO-CHÉRREZ J, PROBST O. Vibration-based damage detection in a wind turbine blade through operational modal analysis under wind excitation[J]. Materials today: proceedings, 2022, 56: 291-297.
[8] SUN S L, WANG T Y, YANG H X, et al.Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function[J]. Renewable energy, 2022, 181: 59-70.
[9] 刘家瑞, 杨国田, 杨锡运. 基于深度卷积自编码器的风电机组故障预警方法研究[J]. 太阳能学报, 2022, 43(11): 215-223.
LIU J R, YANG G T, YANG X Y.Research on wind turbine fault warning method based on deep convolution auto-encoder[J]. Acta energiae solaris sinica, 2022, 43(11): 215-223.
[10] 高峰, 张鸿, 许琳, 等. 风电机组叶片故障仿真与状态判别研究[J]. 太阳能学报, 2023, 44(4): 52-59.
GAO F, ZHANG H, XU L, et al.Research on fault simulation and state judgment of wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(4): 52-59.
[11] MISHNAEVSKY L Jr.Root causes and mechanisms of failure of wind turbine blades: overview[J]. Materials, 2022, 15(9): 2959.
[12] TARFAOUI M, NACHTANE M, KHADIMALLAH H, et al.Simulation of mechanical behavior and damage of a large composite wind turbine blade under critical loads[J]. Applied composite materials, 2018, 25(2): 237-254.
[13] ZHANG L A, GUO Y Z, WANG J H, et al.Structural failure test of a 52.5 m wind turbine blade under combined loading[J]. Engineering failure analysis, 2019, 103: 286-293.
[14] 顾永强, 冯锦飞, 贾宝华, 等. 风力发电机叶片折断对叶片动力影响分析[J]. 内蒙古电力技术, 2020, 38(5): 1-4.
GU Y Q, FENG J F, JIA B H, et al.Influence analysis of wind turbine blade breaking on blade dynamics[J]. Inner Mongolia electric power, 2020, 38(5): 1-4.
[15] 戴巨川. 叶片断裂事故条件下直驱式风电机组动态特性分析[J]. 机械工程学报, 2013, 49(2): 190-198.
DAI J C.Dynamic characteristics analyzed of large scale directly-driven wind turbines under blade fracture accident condition[J]. Journal of mechanical engineering, 2013, 49(2): 190-198.
[16] SIMEON B.On Lagrange multipliers in flexible multibody dynamics[J]. Computer methods in applied mechanics and engineering, 2006, 195(50/51): 6993-7005.
[17] BURTON T, JENKINS N, SHARPE D, et al.Wind energy handbook[M]. Second edition Hoboken: Wiley, 2011.
[18] 叶杭冶. 风力发电机组的控制技术[M]. 3版. 北京: 机械工业出版社, 2015.
YE H Y.Control technology of wind turbine[M]. 3rd ed. Beijing: China Machine Press, 2015.
[19] 杨涛, 任永, 刘霞, 等. 风力机叶轮质量不平衡故障建模及仿真研究[J]. 机械工程学报, 2012, 48(6): 130-135.
YANG T, REN Y, LIU X, et al.Research on the modeling and simulation of wind turbine rotor imbalance fault[J]. Journal of mechanical engineering, 2012, 48(6): 130-135.
[20] JONKMAN J, BUTTERFILED S, MUSIAL W, et al.Definition of 5-MW reference wind turbine for offshore system development[M]. Golden:National Renewable Energy Laboratory, 2009.
[21] 王莹, 王伟峰, 李常, 等. 基于风电场实例的风力机叶片失效分析[A]. 风能产业, 2019: 99-104.
WANG Y, WANG W F, LI C, et al.Failure analysis of wind turbine blades based on wind farm examples[A]. Wind energy industry, 2019: 99-104.

基金

浙江省“尖兵”“领雁”研发攻关计划项目(2023C01123)

PDF(2980 KB)

Accesses

Citation

Detail

段落导航
相关文章

/