采用自由涡尾迹法探索漂浮式风电机组在偏航工况下,受平台纵摇影响时功率与气动特性变化规律。研究结果表明:随着偏航角的增加,输出功率以二阶余弦函数下降,推力以一阶余弦函数下降;动态局部轴向诱导因子最小值产生从0°~22°的相移;法向力系数曲线分解所得基频与二倍频分量振幅和偏航角正相关,三倍频分量与偏航无相关性;其中,风轮旋转与纵摇运动耦合导致法向力系数产生相对运动频率更高频的三倍频分量。
Abstract
In this research, the free vortex wake method was used to investigate the change of power and aerodynamic characteristics of floating wind turbine under yaw conditions when influenced by pitching motion. The research results showe that as the yaw angle increased, the output power decreases in a second-order cosine function and the thrust decreases in a first-order cosine function. The minimum value of the dynamic local axial induction factor has a phase shift from 0 to 22 degrees. The decomposition of the normal force coefficient curve reveales that the amplitude of the fundamental frequency and the second harmonic components are positively correlated with the yaw angle, while the third harmonic component is not correlated with the yaw angle. Among them, the coupling of wind turbine rotation and pitching motion resultes in a higher frequency component of the normal force coefficient relative to the motion frequency.
关键词
海上风电机组 /
气动载荷 /
叶片 /
自由涡尾迹 /
偏航
Key words
offshore wind turbines /
aerodynamic loads /
blades /
free vortex wake /
yaw
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GUO Y Z, WANG X D, MEI Y H, et al.Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine[J]. Renewable energy, 2022, 196: 278-297.
[2] HAND M M, SIMMS D A, FINGERSH L J, et al.Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns[R]. National Renewable Energy Lab., Golden, CO.(US), 2001.
[3] SCHEPERS J G, BOORSMA K, CHO T, et al.Analysis of Mexico wind tunnel measurements[R]. Final report of IEA task 29, Mexnext(Phase 1). 2012.
[4] JIMÉNEZ Á, CRESPO A, MIGOYA E. Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind energy, 2009, 13(6): 559-572.
[5] 李银然, 赵丽, 李德顺, 等. 偏航工况下叶片翼型动态特性研究[J]. 太阳能学报, 2022, 43(7): 326-333.
LI Y R, ZHAO L, LI D S, et al.Study on dynamic characteristics of blade airfoil under yaw condition[J]. Acta energiae solaris sinica, 2022, 43(7): 326-333.
[6] QIU Y X, WANG X D, KANG S, et al.Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method[J]. Renewable energy, 2014, 70: 93-106.
[7] LEBLE V, BARAKOS G.10-MW wind turbine performance under pitching and yawing motion[J]. Journal of solar energy engineering, 2017, 139(4): 041003.
[8] WEN B R, TIAN X L, DONG X J, et al.A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions[J]. Energy, 2019, 168: 1138-1156.
[9] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2009.
[10] 张立, 丁勤卫, 李春, 等. 风载荷对不同海上浮式风力机平台运动特性影响对比研究[J]. 太阳能学报, 2021, 42(9): 302-311.
ZHANG L, DING Q W, LI C, et al.Comparative study on effects of wind load on motion characteristics of different offshore floating wind turbine platforms[J]. Acta energiae solaris sinica, 2021, 42(9): 302-311.
[11] 戴丽萍, 周强, 姚世刚, 等. 偏航工况下水平轴风力机气动性能数值分析[J]. 太阳能学报, 2019, 40(3): 628-634.
DAI L P, ZHOU Q, YAO S G, et al.Numerical simulations on aerodynamic performance of horizontal axis wind turbine under yaw conditions[J]. Acta energiae solaris sinica, 2019, 40(3): 628-634.
基金
国家重点研发计划(2022YFB4201302); 国家自然科学基金(52006071); 高效高可靠大型海上风电机组技术及风电场设计技术 (HNKJ20-H88-01)