针对氢燃料在动力系统中的应用需求,从氢储存和氢增压输送两个方面,综述氢燃料储存的研究现状,探讨氢储存原理、输送方案、适用装置、各自优缺点以及安全控制手段,比较几种无损安全设计方案。依据氢无损储存系统设计要求而设计的液氢储罐,包括储箱形状设计、绝热结构选择、支撑结构设计、防晃设计、强度设计等,进行较为综合的比较与分析;并利用CFD内嵌模块对储罐的传热和强度进行数值计算,评估其低温绝热结构的保冷效果;根据承受载荷,对低温条件下的储罐载荷进行强度计算,分析应力应变特性;最后,进行实验验证该储罐保证热流密度小于1.4 W/m2的无损储存的设计要求。
Abstract
Aiming at the application requirements of hydrogen fuel in power systems, the research mainly focused on two sides: hydrogen storage and pressurization transport, including that the research status was reviewed, the principle of hydrogen storage was introduced, the storage and transportation scheme was summarized, the advantages and disadvantages were compared, and the strategy for enhancing system security hydrogen was valid, further, the zero boil-off storage schemes were compared. According to the system requirements and technology guide line for zero boil-off storage of hydrogen, the liquid hydrogen (LH2) storage tank was designed, related techniques were indicated below: firstly, the shape designing of a storage tank, the selection of thermal insulation structure, the demonstration of schemes for support structure, the designing of sloshing suppression for LH2 storage tank, and analysis of the design of strength; in addition, the heat transfer and strength of LH2 storage tanks were numerical calculated using CFD modules to evaluate the insulation effect of cryogenic insulation structures and analyzed the stress-strain of loaded LH2 storage tanks to strength calculation in cryogenic conditions; Finally, the test verified that the designed LH2 storage tank can meet the design requirements of zero boil-off storage that the value of heat flux was less than 1.4 W/m2. The results provided a theoretical basis and guidance for designing, developing, numerical simulation, and applying LH2 storage tanks in China.
关键词
氢燃料 /
液氢储罐 /
无损储存 /
数值模拟 /
实验验证
Key words
hydrogen fuel /
liquid hydrogen storage tank /
zero boil-off storage /
numerical simulation /
test verification
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张玙, 王国平, 李娜, 等. 液氢循环泵低温水力性能的实验研究[C]//第十二届全国低温工程大会. 南京, 2015: 92-96.
ZHANG Y, WANG G P, LI N, et al.Experimental study on cryogenic performance of liquid ydrogen circulating pump[C]//Paper of the 12th National Cryogenic Engineering Conference. Nanjing, 2015: 92-96.
[2] DURBIN D J, MALARDIER-JUGROOT C.Review of hydrogen storage techniques for on board vehicle applications[J]. International journal of hydrogen energy, 2013, 38(34): 14595-14617.
[3] 冶文莲, 王小军, 王田刚, 等. 液氢贮箱零蒸发数值模拟与分析[J]. 低温与超导, 2012, 40(11): 11-15, 36.
YE W L, WANG X J, WANG T G, et al.Numerical simulation and analysis of zero boil-off in a liquid hydrogen storage tank[J]. Cryogenics & superconductivity, 2012, 40(11): 11-15, 36.
[4] 史俊茹, 邱利民. 液氢无损储存系统的最新研究进展[J]. 低温工程, 2006(6): 53-57.
SHI J R, QIU L M.Recent development of zero boil-off storage of liquid hydrogen[J]. Cryogenics, 2006(6): 53-57.
[5] 王绍成, 齐济. 临近空间飞行器氢燃料电池电推进关键技术[J]. 空天技术, 2022(5): 58-67.
WANG S C, QI J.Key technologies of hydrogen fuel cell electric propulsion for near space vehicles[J]. Aerospace technology, 2022(5): 58-67.
[6] ORDIN P M, WEISS S, CHRISTENSON H.Pressure-temperature histories of liquid hydrogen under pressurization and venting conditions[M]//Advances in Cryogenic Engineering. Boston, MA: Springer US, 1960: 481-486.
[7] LIU Z, LI Y Z, XIE F S, et al.Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period[J]. Applied thermal engineering, 2016, 98: 430-439.
[8] CHOI Y, KIM J, PARK S, et al.Design and analysis of liquid hydrogen fuel tank for heavy duty truck[J]. International journal of hydrogen energy, 2022, 47(32): 14687-14702.
[9] RATNAKAR R R, SUN Z, BALAKOTAIAH V.Effective thermal conductivity of insulation materials for cryogenic LH2 storage tanks: a review[J]. International journal of hydrogen energy, 2023, 48(21): 7770-7793.
[10] LIU Y W, LIU X, YUAN X Z, et al.Optimizing design of a new zero boil off cryogenic storage tank in microgravity[J]. Applied energy, 2016, 162: 1678-1686.
[11] STEWART M. Pressurization of a flightweight, liquid hydrogen tank: evaporation & condensation at the liquid/vapor interface[C]//Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta, GA, 2017: AIAA2017-4916.
[12] 廖少英, 赵金才. 航空-航天飞行器推进增压输送系统设计[M]. 北京: 中国宇航出版社, 2012: 156-187.
LIAO S Y, ZHAO J C.Design of propulsion pressurization conveying system for aerospace vehicle[M]. Beijing: China Aerospace Publishing House, 2012: 156-187.
[13] 王文斌. 液体火箭增压输送系统动态特性仿真与分析[D]. 长沙: 国防科学技术大学, 2009.
WANG W B.Numerical simulation and analysis on dynamic characteristics for liquid rocket pressurization feed system[D]. Changsha: National University of Defense Technology, 2009.
[14] 化工第四设计院. 深冷手册-上册[M]. 北京: 燃料化学工业出版社, 1973: 56-96.
The Fourth Design Institute of Chemical Industry. Cryogenic manual-volume I[M]. Beijing: Fuel Chemical Industry Press, 1973: 56-96.
[15] 赵永志, 花争立, 欧可升, 等. 车载低温高压复合储氢技术研究现状与挑战[J]. 太阳能学报, 2013, 34(7): 1300-1306.
ZHAO Y Z, HUA Z L, OU K S, et al.Development and challenges of cryo-compressed hydrogen storage technologies for automotive applications[J]. Acta energiae solaris sinica, 2013, 34(7): 1300-1306.
[16] WANG H C, ZHAO Y X, DONG X Q, et al.Thermodynamic analysis of low-temperature and high-pressure (cryo-compressed) hydrogen storage processes cooled by mixed-refrigerants[J]. International journal of hydrogen energy, 2022, 47(67): 28932-28944.
[17] 郭海洋. 基于VB.NET卧式压力容器CAD系统的开发研究[D]. 成都: 四川大学, 2006.
GUO H Y.Research on the development of horizontal pressure vessel CAD system based on VB.net[D]. Chengdu: Sichuan University, 2006.
[18] PEHR K, SAUERMANN P, TRAEGER O, et al.Liquid hydrogen for motor vehicles-the world's first public LH2 filling station[J]. International journal of hydrogen energy, 2001, 26(7): 777-782.
[19] 王朝, 邹宏伟, 陈甲楠, 等. 液氮、液氢加注系统数值仿真与试验研究[J]. 太阳能学报, 2022, 43(11): 460-465.
WANG C, ZOU H W, CHEN J N, et al.Numerical simulation and experimental study of liquid nitrogen and liquid hydrogen filling system[J]. Acta energiae solaris sinica, 2022, 43(11): 460-465.
[20] 岳松, 陈宇轩, 肖虎, 等. 熔盐储罐预热过程优化研究[J]. 太阳能学报, 2022, 43(10): 113-118.
YUE S, CHEN Y X, XIAO H, et al.Study on optimization of preheating process of molten salt storage tank[J]. Acta energiae solaris sinica, 2022, 43(10): 113-118.
[21] 陈瑞, 郑津洋, 徐平, 等. 金属材料常温高压氢脆研究进展[J]. 太阳能学报, 2008, 29(4): 502-508.
CHEN R, ZHENG J Y, XU P, et al.Hydrogen embrittlement of metallic materials in high-pressure hydrogen at normal temperature[J]. Acta energiae solaris sinica, 2008, 29(4): 502-508.
[22] 屈莎莎, 谭粤, 李蔚, 等. 液氢储运容器用低温材料的研究进展[J]. 山东化工, 2022, 51(20): 106-109, 113.
QU S S, TAN Y, LI W, et al.Research progress of cryogenic materials for liquid hydrogen storage and transportation vessels[J]. Shandong chemical industry, 2022, 51(20): 106-109, 113.
[23] 高彦峰, 宋琦, 谢高峰, 等. 临近空间无人机液氢供能系统技术分析[J/OL]. 航空工程进展, 2023: 1-15. (2023-08-11). https://kns.cnki.net/kcms/detail/61.1479.V.20230810.1803.002.html
GAO Y F, SONG Q, XIE G F, et al. Analysis of liquid hydrogen power systems for near space unmanned aerial vehicles[J/OL]. Advances in aeronautical science and engineering, 2023: 1-15. (2023-08-11). https://kns.cnki.net/kcms/detail/61.1479.V.20230810.1803.002.html.
[24] 蒲亮, 余海帅, 代明昊, 等. 氢的高压与液化储运研究及应用进展[J]. 科学通报, 2022, 67(19): 2172-2191.
PU L, YU H S, DAI M H, et al.Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation[J]. Chinese science bulletin, 2022, 67(19): 2172-2191.
[25] 达道安. 空间低温技术[M]. 北京: 中国宇航出版社, 1991: 116-117.
DA D A.Cryogenic space technology[M]. Beijing: China Aerospace Publishing House, 1991: 116-117.
基金
辽宁省教育厅基本科研项目面上项目(LJKMZ20220980); 中国科学院低温工程学重点实验室开放课题(CRYO202207)