基于p阶线性模型的地埋管换热器流体温度分布研究

赵鹏, 张东海, 李晓昭, 张古彬, 寇亚飞, 高蓬辉

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 51-59.

PDF(3122 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3122 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 51-59. DOI: 10.19912/j.0254-0096.tynxb.2023-0690

基于p阶线性模型的地埋管换热器流体温度分布研究

  • 赵鹏1,2, 张东海1~3, 李晓昭1,2, 张古彬4, 寇亚飞4, 高蓬辉1~3
作者信息 +

STUDY ON FLUID TEMPERATURE DISTRIBUTION OF BURIED TUBE HEAT EXCHANGER BASED ON p-ORDER LINER MODEL

  • Zhao Peng1,2, Zhang Donghai1~3, Li Xiaozhao1,2, Zhang Gubin4, Kou Yafei4, Gao Penghui1~3
Author information +
文章历史 +

摘要

利用自主研发的分层热响应测试系统,获取沿深度方向上(竖向)管内流体温度实测数据,对比p阶线性分布模型计算结果和实测数据,研究两种典型工况条件下分层岩土介质中管内流体竖向分布规律和最佳p值。结果表明:恒热流工况时,p=-5阶线性分布模型能够准确预测管内流体温度分布;恒温工况时,最佳p值随流量的变化而变化,其关系为:|p|=7.361lnV +6.684。

Abstract

The self-developed stratified thermal response test system was used to obtain the data of fluid temperature in the pipe along the flow direction (vertical), and then the calculation results of the p-order linear model were compared with the measured data to investigate the temperature distribution law and the optimal p-value of fluid in the pipe for stratification conditions under two typical working conditions. The results show that the p=-5 order linear model can accurately predict the temperature distribution in the pipe under constant heat flow condition. Under constant temperature condition, the optimal p-value varies with flow rate and the relationship is: | p |=7.361 lnV + 6.684.

关键词

地热能 / 地埋管换热器 / 岩土传热 / 地质结构分层 / 参数估值

Key words

geothermal energy / buried tube heat exchanger / rock and soil heat transfer / stratification of geological structure / parameter estimation

引用本文

导出引用
赵鹏, 张东海, 李晓昭, 张古彬, 寇亚飞, 高蓬辉. 基于p阶线性模型的地埋管换热器流体温度分布研究[J]. 太阳能学报. 2024, 45(6): 51-59 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0690
Zhao Peng, Zhang Donghai, Li Xiaozhao, Zhang Gubin, Kou Yafei, Gao Penghui. STUDY ON FLUID TEMPERATURE DISTRIBUTION OF BURIED TUBE HEAT EXCHANGER BASED ON p-ORDER LINER MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 51-59 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0690
中图分类号: TK513.5   

参考文献

[1] 张琳邡, 张东海, 周扬, 等. 分层岩土中地埋管换热器传热解析模型与分析[J]. 太阳能学报, 2022, 43(10): 378-385.
ZHANG L F, ZHANG D H, ZHOU Y, et al.Analytical mode and analysis of heat transfer of ground heat exchangers in layered stratum[J]. Acta energiae solaris sinica, 2022, 43(10): 378-385.
[2] 任连伟, 徐健, 孔纲强, 等. 冬季工况多次温度循环下微型钢管桩群桩热力响应特性现场试验[J]. 岩土工程学报, 2019, 41(11): 2053-2060.
REN L W, XU J, KONG G Q, et al.Field tests on thermal response characteristics of micro steel pile group under multiple temperature cycles in winter conditions[J]. Chinese journal of geotechnical engineering, 2019, 41(11): 2053-2060.
[3] MOUSA M M, BAYOMY A M, SAGHIR M Z.Long-term performance investigation of a GSHP with actual size energy pile with PCM[J]. Applied thermal engineering, 2022, 210: 118381-118395.
[4] YOU S, CHENG X H, GUO H X, et al.In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers[J]. Energy and buildings, 2014, 79(8): 23-31.
[5] XIA C C, SUN M, ZHANG G Z, et al.Experimental study on geothermal heat exchangers buried in diaphragm walls[J]. Energy and buildings, 2012, 52(9): 50-55.
[6] INGERSOLL L R, PLASS H J.Theory of the ground pipe heat source for the heat pump[J]. Heating, piping and air conditioning, 1948, 20(7): 119-122.
[7] ZENG H Y, DIAO N R, FANG Z H.A finite line-source model for boreholes in geothermal heat exchangers[J]. Heat transfer-Asian research, 2002, 31(7): 558-567.
[8] ZENG H Y, DIAO N R, FANG Z H.Heat transfer analysis of boreholes in vertical ground heat exchangers[J]. International journal of heat and mass transfer, 2003, 46(23): 4467-4481.
[9] PASQUIER P, MARCOTTE D.Joint use of quasi-3D response model and spectral method to simulate borehole heat exchanger[J]. Geothermics, 2014, 51(7): 281-299.
[10] MORCHIO S, FOSSA M.Modelling and validation of a new hybrid scheme for predicting the performance of U-pipe borehole heat exchangers during distributed thermal response test experiments[J]. Applied thermal engineering, 2021, 186: 116514-116528.
[11] REES S J, HE M M.A three-dimensional numerical model of borehole heat exchanger heat transfer and fluid flow[J]. Geothermics, 2013, 46(4): 1-13.
[12] ZHANG D H, GAO P H, ZHOU Y, et al.An experimental and numerical investigation on temperature profile of underground soil in the process of heat storage[J]. Renewable energy, 2020, 148(4): 1-21.
[13] 杨卫波, 朱洁莲, 谢治祥. 地源热泵地下岩土热物性现场热响应测试方法研究[J]. 流体机械, 2011, 39(9): 57-61, 49.
YANG W B, ZHU J L, XIE Z X.Study on the method of in-situ thermal response test for the determination of ground thermal properties in ground source heat pump[J]. Fluid machinery, 2011, 39(9): 57-61, 49.
[14] BEIER R A, ACUÑA J, MOGENSEN P, et al. Vertical temperature profiles and borehole resistance in a U-tube borehole heat exchanger[J]. Geothermics, 2012, 44(10): 23-32.
[15] 李明洪, 李晓昭, 王斌, 等. 地质结构分层中地埋管换热特性研究[J]. 太阳能学报, 2020, 41(1): 290-294.
LI M H, LI X Z, WANG B, et al.Study on heat transfer characteristic of vertical borehole heat exchanger at different geological structure[J]. Acta energiae solaris sinica, 2020, 41(1): 290-294.
[16] ZHANG B, GU K, SHI B, et al.Actively heated fiber optics based thermal response test: a field demonstration[J]. Renewable and sustainable energy reviews, 2020, 134(9): 110336.
[17] MARCOTTE D, PASQUIER P.On the estimation of thermal resistance in borehole thermal conductivity test[J]. Renewable energy, 2008, 33(11): 2407-2415.
[18] BEIER R A.Transient heat transfer in a U-tube borehole heat exchanger[J]. Applied thermal engineering, 2014, 62(1): 256-266.
[19] DU C Y, CHEN Y M.An average fluid temperature to estimate borehole thermal resistance of ground heat exchanger[J]. Renewable energy, 2011, 36(6): 1880-1885.
[20] ZHAO P, LI X Z, ZHANG Y, et al. Stratified thermal response test measurement and analysis[J]. Energy and buildings, 2020, 215(5): 109865.1-109865.10.
[21] RAINIERI S, BOZZOLI F, PAGLIARINI G.Modeling approaches applied to the thermal response test: a critical review of the literature[J]. H & R research, 2011, 17(6): 977-990.
[22] SPITLER J D, GEHLIN S E A. Thermal response testing for ground source heat pump systems-an historical review[J]. Renewable and sustainable energy reviews, 2015, 50(10): 1125-1137.
[23] AUSTIN W A, YAVUZTURK C, SPITLER J D.Development of an in-situ system and analysis procedure for measuring ground thermal properties[J]. Ashrae transactions, 2000, 106(1): 365-379.
[24] GEHLIN S, HELLSTROM G.Recent status of in-situ thermal response tests for BTES applications in Sweden Proc[C]// Terrastock, Sweden, 2000, 159-164.
[25] ASHRAE. ASHRAE handbook: HVAC applications[M]. Atlanta, GA: 2011.

基金

国家自然科学基金青年项目(42202299); 江苏省双创博士计划(140923059); 河南省地质环境项目(豫地环〔2022〕1号); 深地科学与工程云龙湖实验室重点研发计划(104023004)

PDF(3122 KB)

Accesses

Citation

Detail

段落导航
相关文章

/