基于C-DWT和FFNN的风电场接地故障诊断方法

张成义, 高兴, 闫立鹏, 王晓东

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 393-398.

PDF(1774 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1774 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 393-398. DOI: 10.19912/j.0254-0096.tynxb.2023-1281

基于C-DWT和FFNN的风电场接地故障诊断方法

  • 张成义1, 高兴2, 闫立鹏1, 王晓东2
作者信息 +

GROUND FAULT DIAGNOSIS METHOD FOR WIND FARM BASED ON C-DWT AND FFNN

  • Zhang Chengyi1, Gao Xing2, Yan Lipeng1, Wang Xiaodong2
Author information +
文章历史 +

摘要

为及时、准确地检测风电场交流输电线路的接地故障并对其进行分类,同时解决故障电阻、故障起始时刻和故障位置给故障诊断精度带来的影响,提出一种基于Clarke变换、离散小波变换(DWT)和前馈神经网络(FFNN)相结合的风电机组交流输电线路故障检测及分类方法。该方法通过Clarke变换对测量的三相电压信号进行分解生成γ分量、α分量和β分量,采用DWT就3个分量进行高频分量的提取,将5种统计学方法应用于高频分量D1,生成最终故障特征值。将γ分量的故障特征值和γ分量、α分量和β分量的故障特征值分别与FFNN相结合以实现精准的风电机组接地故障检测和分类。通过1400个故障案例验证该方法可不受故障电阻、故障起始时刻和故障位置的影响,有效对风电场交流输电线路进行故障诊断。

Abstract

In order to timely and accurately detect grounding faults in wind farm AC transmission lines and classify them. At the same time, to solve the influence of fault resistance, fault starting time and fault location on fault diagnosis accuracy, a fault detection and classification method for wind turbine AC transmission lines based on the combination of Clarke transform, discrete wavelet transform (DWT) and feedforward neural network (FFNN) is proposed. This method decomposes and generates the measured three-phase voltage signal through Clarke transform γ component, α component and β component, DWT is used to extract high-frequency components from three components, and five statistical methods are applied to high-frequency component D1 to generate the final fault feature values. Take γ component of fault eigenvalues and γ Component, α component and β component of fault eigenvalues are combined with FFNN to achieve accurate detection and classification of wind turbine grounding faults. Through 1400 fault cases, it has been verified that this method can effectively diagnose faults in wind farm AC transmission lines without being affected by fault resistance, fault initiation time, and fault location.

关键词

风电场 / 故障检测 / 神经网络 / 故障分类 / 输电线路

Key words

wind farm / fault detection / neural network / fault classification / transmission lines

引用本文

导出引用
张成义, 高兴, 闫立鹏, 王晓东. 基于C-DWT和FFNN的风电场接地故障诊断方法[J]. 太阳能学报. 2023, 44(11): 393-398 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1281
Zhang Chengyi, Gao Xing, Yan Lipeng, Wang Xiaodong. GROUND FAULT DIAGNOSIS METHOD FOR WIND FARM BASED ON C-DWT AND FFNN[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 393-398 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1281
中图分类号: TM614   

参考文献

[1] 薛翼程, 张哲任, 徐政. 适用于短路故障分析的风电场动态等值建模方法[J]. 太阳能学报, 2022, 43(5): 327-335.
XUE Y C, ZHANG Z R, XU Z.Dynamic equivalent model of wind farm for short-circuit faults analysis[J]. Acta energiae solaris sinica, 2022, 43(5): 327-335.
[2] 贾科, 顾晨杰, 毕天姝, 等. 大型光伏电站汇集系统的故障特性及其线路保护[J]. 电工技术学报, 2017, 32(9): 189-198.
JIA K, GU C J, BI T S, et al.Fault characteristics and line protection within the collection system of a large-scale photovoltaic power plant[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 189-198.
[3] 薛永端, 亓志滨, 蔡卓远, 等. 基于零序导纳变化的跨线异名相两点相继接地故障检测[J]. 电力系统自动化, 2023, 47(7): 174-183.
XUE Y D, QI Z B, CAI Z Y, et al.Cross-line different-phase two-point successive grounding fault detection based on change of zero-sequence admittance[J]. Automation of electric power systems, 2023, 47(7): 174-183.
[4] HERLENDER J, IŻYKOWSKI J, SOLAK K. Compensation of the current transformer saturation effects for transmission line fault location with impedance-differential relay[J]. Electric power systems research, 2020, 182: 106223.
[5] 王晓东, 王永浩, 刘颖明, 等. 海上风电场集电多分支线路故障区段定位方法[J]. 太阳能学报, 2023, 44(1): 163-170.
WANG X D, WANG Y H, LIU Y M, et al.Fault branch location for multi-branch collection lines of offshore wind farm[J]. Acta energiae solaris sinica, 2023, 44(1): 163-170.
[6] 张科, 朱永利, 郑艳艳, 等. 风电场输电线路单相接地故障定位研究[J]. 太阳能学报, 2020, 41(5): 114-120.
ZHANG K, ZHU Y L, ZHENG Y Y, et al.Fault location of single-phase earth in transmission lines of wind farm[J]. Acta energiae solaris sinica, 2020, 41(5): 114-120.
[7] 张大海, 张晓炜, 孙浩, 等. 基于卷积神经网络的交直流输电系统故障诊断[J]. 电力系统自动化, 2022, 46(5): 132-145.
ZHANG D H, ZHANG X W, SUN H, et al.Fault diagnosis for AC/DC transmission system based on convolutional neural network[J]. Automation of electric power systems, 2022, 46(5): 132-145.
[8] MORADZADEH A, TEIMOURZADEH H, MOHAMMADI-IVATLOO B, et al.Hybrid CNN-LSTM approaches for identification of type and locations of transmission line faults[J]. International journal of electrical power & energy systems, 2022, 135: 107563.
[9] 朱晓红, 杨伟荣, 张蓉, 等. 基于RNN-LSTM神经网络的小电流接地故障选线方法[J]. 高压电器, 2023, 59(7): 213-220.
ZHU X H, YANG W R, ZHANG R, et al.Line selection method of low current grounding fault based on RNN-LSTM neural network[J]. High voltage apparatus, 2023, 59(7): 213-220.
[10] 李临风, 饶丹, 樊瑞, 等. 基于双向LSTM和注意力机制的输电线路故障判别方法[J]. 广东电力, 2022, 35(11): 91-98.
LI L F, RAO D, FAN R, et al.Fault identification method of transmission line based on bidirectional LSTM and attention mechanism[J]. Guangdong electric power, 2022, 35(11): 91-98.
[11] TAO H F, WANG P, CHEN Y Y, et al.An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks[J]. Journal of the Franklin Institute, 2020, 357(11): 7286-7307.
[12] LALA H, KARMAKAR S.Detection and experimental validation of high impedance arc fault in distribution system using empirical mode decomposition[J]. IEEE systems journal, 2020, 14(3): 3494-3505.
[13] 何瑞江, 胡志坚, 王天一. 计及分布式电源注入谐波的谐振接地系统故障选线方法[J]. 电网技术, 2019, 43(2): 670-680.
HE R J, HU Z J, WANG T Y.A fault line selection method for resonant grounding system considering injected harmonics of distributed generation[J]. Power system technology, 2019, 43(2): 670-680.

基金

国家电投上海发电设备成套设计研究院科技发展基金(202230125J); 辽宁省揭榜挂帅科技攻关专项(2021JH1/10400009)

PDF(1774 KB)

Accesses

Citation

Detail

段落导航
相关文章

/