干式连接装配式风电混塔非线性特征研究

师振贵, 王云超, 黄赐荣, 张栋梁, 王宇航, 王滨

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 564-571.

PDF(3907 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3907 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 564-571. DOI: 10.19912/j.0254-0096.tynxb.2023-1662

干式连接装配式风电混塔非线性特征研究

  • 师振贵1, 王云超1, 黄赐荣2, 张栋梁2, 王宇航3, 王滨2
作者信息 +

RESEARCH ON NONLINEAR CHARACTERISTICS OF DRY-CONNECTED PREFABRICATED WIND TURBINE HYBRID TOWER

  • Shi Zhengui1, Wang Yunchao1, Huang Cirong2, Zhang Dongliang2, Wang Yuhang3, Wang Bin2
Author information +
文章历史 +

摘要

为探究干式连接装配式风电混塔在复杂耦合载荷作用下的非线性行为特征,利用ANSYS和ABAQUS两种软件分别建立涵盖风电机组基础、混凝土塔筒、钢混过渡段、钢绞线、钢塔筒、风电机组的一体化有限元模型,采用风电机组厂家提供的截面载荷进行静力加载分析,验证两种有限元模型计算结果的正确性。在此基础上,分别针对塔架结构的边界非线性、材料非线性、几何非线性行为特征开展系统研究,分析拼缝接触状态、混凝土塑性损伤模型、几何大变形对于塔架承载能力以及变形能力的影响。研究表明:干式连接混塔在极限大弯矩作用下,塔架迎风侧水平接缝会出现脱开等现象,从而让竖向接缝有空间进行切向滑动,导致上下管片相互挤压,管片出现大范围的应力集中现象,开启几何大变形后挤压现象更为明显;当管片应力超过混凝土抗拉强度后,混凝土发生开裂,钢筋发挥作用,协同受力,混凝土进行应力重分布,保障了塔架在极限荷载作用下的整体承载力和稳定性。

Abstract

In order to explore the nonlinear behavior characteristics of dry-connected prefabricated wind turbine hybrid towers under complex coupled loads, this paper uses ANSYS and ABAQUS software to establish integrated finite element models, covering wind turbine foundation, concrete tower, steel adapter, steel tower, and wind turbine. Static loading analysis is conducted using cross-sectional loads provided by the wind turbine manufacturer to verify the correctness of the calculation results of two finite element models. On this basis, systematic research was conducted on the boundary nonlinearity, material nonlinearity, and geometric nonlinearity behavior characteristics of tower structures. The effects of joint connection status, concrete elastic-plastic damage model, and geometric large deformation on the bearing capacity and deformation capacity of the tower were analyzed. Research results show that: under the action of extreme large bending moments, the horizontal joint on the windward side of the tower may detach, allowing space for tangential sliding of the vertical joints, resulting in squeeze each other of the upper and lower concrete segments, and a large range of stress concentration in the concrete segments. The squeeze phenomenon is more obvious after opening the geometric deformation; When the principal tensile stress of concrete segment exceeds the tensile strength, the concrete will crack, and the steel reinforcements work together to bear the force, the concrete undergoes stress redistribution, that ensuring the overall bearing capacity and stability of the tower under ultimate load.

关键词

陆上风电 / 装配式 / 混塔 / 连接拼缝 / 非线性行为

Key words

onshore wind power / prefabricated / hybrid tower / connecting joint / nonlinear behavior

引用本文

导出引用
师振贵, 王云超, 黄赐荣, 张栋梁, 王宇航, 王滨. 干式连接装配式风电混塔非线性特征研究[J]. 太阳能学报. 2024, 45(6): 564-571 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1662
Shi Zhengui, Wang Yunchao, Huang Cirong, Zhang Dongliang, Wang Yuhang, Wang Bin. RESEARCH ON NONLINEAR CHARACTERISTICS OF DRY-CONNECTED PREFABRICATED WIND TURBINE HYBRID TOWER[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 564-571 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1662
中图分类号: TU378   

参考文献

[1] 刘吉辉, 左倜. 大型陆上风力发电技术综述[J]. 上海节能, 2006(6): 53-55.
LIU J H, ZUO T.Large scale on-shore wind power generation technology[J]. Shanghai energy conservation, 2006(6): 53-55.
[2] 邢作霞, 项尚, 徐健, 等. 外部环境对风电机组性能影响分析[J]. 太阳能学报, 2021, 42(3): 98-104.
XING Z X, XIANG S, XU J, et al.Analysis of influence of external environment on performance of wind turbine[J]. Acta energiae solaris sinica, 2021, 42(3): 98-104.
[3] ERTAS O, OZDEN S, OZTURAN T.Ductile connections in precast concrete moment resisting frames[J]. PCI journal, 2006, 51(3): 66-76.
[4] 李清义, 刘峰, 程学文. 风力发电机组超速故障分析[C]//第二届中国风电后市场专题研讨会论文集. 蓬莱, 中国, 2015.
LI Q Y, LIU F, CHENG X W.Analysis of overspeed faults in wind turbines[C]//Proceedings of the 2nd China Wind Power Aftermarket Symposium. Penglai, China, 2015.
[5] 王振宇, 张彪, 赵艳, 等. 台风作用下风力机塔架振动响应研究[J]. 太阳能学报, 2013, 34(8): 1434-1442.
WANG Z Y, ZHANG B, ZHAO Y, et al.Danamic response of wind turbine under typhoon[J]. Acta energiae solaris sinica, 2013, 34(8): 1434-1442.
[6] HUANG X G, LI B K, ZHOU X H, et al.Geometric optimisation analysis of steel-concrete hybrid wind turbine towers[J]. Structures, 2022, 35: 1125-1137.
[7] CHEN J L, LI J W, HE X H.Design optimization of steel-concrete hybrid wind turbine tower based on improved genetic algorithm[J]. The structural design of tall and special buildings, 2020, 29(10): 1-14.
[8] 吴明明. 干连接预应力预制混凝土风电塔筒结构抗震性能研究[D]. 沈阳: 沈阳建筑大学, 2021.
WU M M.Seismic performance of dry-connected prestressed precast concrete wind turbine tower (WTT) structures[D]. Shenyang: Shenyang Jianzhu University, 2021.
[9] 张栋梁, 汤群益, 李天昊, 等. 风载和地震波联合作用下风电机组钢混组合式塔架响应控制研究[J]. 振动与冲击, 2022, 41(23): 190-200.
ZHANG D L, TANG Q Y, LI T H, et al.Response control of steel-concrete composite tower of wind turbine under combined action of wind load and seismic wave[J]. Journal of vibration and shock, 2022, 41(23): 190-200.
[10] 李向姚, 王文玉. 装配式混塔体外预应力系统施工研究: 以免灌浆干式连接分片预制装配式混塔为例[J]. 北方建筑, 2020, 5(5): 15-18.
LI X Y, WANG W Y.Research on construction of external prestressed system of prefabricated mixed tower: take grouting-free dry connection split prefabricated mixed tower as an example[J]. Northern architecture, 2020, 5(5): 15-18.
[11] 丛欧, 李金威, 汪彦辰. 预制装配式钢-混凝土组合式风机塔架关键部位受力性能研究[J]. 西北水电, 2023(2): 86-90, 99.
CONG O, LI J W, WANG Y C.Mechanical performance of key parts for prefabricated steel-concrete wind turbine tower[J]. Northwest hydropower, 2023(2): 86-90, 99.
[12] 帅富文. 风电机组混凝土结构塔筒竖向灌浆接缝的受剪承载性能与计算方法研究[D]. 重庆: 重庆大学, 2022.
SHUAI F W.Research on the shear bearing performance and calculation method of vertical grouting joints of concrete tower of wind turbine structure[D]. Chongqing: Chongqing University, 2022.
[13] 张学森, 吴香国, 李丹, 等. 额定风速下装配式UHPC风电塔筒静力与疲劳性能[J]. 可再生能源, 2022, 40(8): 1066-1072.
ZHANG X S, WU X G, LI D, et al.Static and fatigue performance of assembled UHPC wind tower under rated wind speed[J]. Renewable energy resources, 2022, 40(8): 1066-1072.
[14] 张家志, 王超飞, 吕伟荣, 等. 基于非线性接触的风电基础数值模拟[J]. 太阳能学报, 2016, 37(3): 591-597.
ZHANG J Z, WANG C F, LYU W R, et al.Nonlinear contact analysis of wind turbine foundation[J]. Acta energiae solaris sinica, 2016, 37(3): 591-597.
[15] 陈俊岭, 高洁, 赵邦州, 等. 风电机组钢塔架与钢-混凝土组合塔架动力响应对比分析[J]. 太阳能学报, 2023, 44(3): 225-231.
CHEN J L, GAO J, ZHAO B Z, et al.Comprehensive analysis of dynamic response of steel and steel-concrete combined wind turbine towers[J]. Acta energiae solaris sinica, 2023, 44(3): 225-231.

基金

中国博士后科学基金(2023M733316)

PDF(3907 KB)

Accesses

Citation

Detail

段落导航
相关文章

/