SEAWATER ELECTROLYSIS HYDROGEN PRODUCTION PROCESS FOR COMPREHENSIVE UTILIZATION OF CONCENTRATED SEAWATER
Xin Huijun1, Liu Wei2, Zhou Daojin2, Sun Xiaoming2
Author information+
1. Shenzhen Hingear Energy Co., Ltd., Shenzhen 518000, China; 2. College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
This work first reviews recent progress in seawater electrolysis and then discusses key challenges in continuous and concentrated seawater electrolysis, such as insufficient anodic catalyst selectivity, cathodic catalyst poisoning, and inefficient utilization of seawater resources. It further provides prospects for developing efficient and stable seawater electrolysis systems by focusing on electrode composition, structural optimization, anodic coupling reactions, and the comprehensive utilization of calcium and magnesium ions.
Xin Huijun, Liu Wei, Zhou Daojin, Sun Xiaoming.
SEAWATER ELECTROLYSIS HYDROGEN PRODUCTION PROCESS FOR COMPREHENSIVE UTILIZATION OF CONCENTRATED SEAWATER[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 15-20 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1754
中图分类号:
TK91
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TURNER J A.Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974. [2] 程建荣, 谢素美, 曹艳, 等. 中国海上风电发展现状及对策建议研究[J]. 科技导报, 2025, 43(3): 115-128. CHENG J R, XIE S M, CAO, Y.Research on the development status and countermeasures of offshore wind power in China[J]. Science &Technology review, 2025, 43(3): 115-128. [3] 王轶文, 单衍雪, 刘丙萍. 膜分离技术研究进展[J]. 山东化工, 2021, 50(24): 62-63. WANG Y W, SHAN Y X, LIU B P.Recent progress of membrane separation technology[J]. Shandong chemical industry, 2021, 50(24): 62-63. [4] CIPOLLINA A, MICALE G, RIZZUTI L.Seawater desalination: conventional and renewable energy processes[M]. Heidelberg: Springer, 2009. [5] ELIMELECH M, PHILLIP W A.The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. [6] American Water Works Association. Desalination of seawater-Manual of water supply practices M61[M]. United States: American water works association, 2011. [7] DIONIGI F, REIER T, PAWOLEK Z, et al.Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis[J]. ChemSusChem, 2016, 9(9): 962-972. [8] ZHANG F H, YU L, WU L B, et al.Rational design of oxygen evolution reaction catalysts for seawater electrolysis[J]. Trends in chemistry, 2021, 3(6): 485-498. [9] GENG S K, ZHENG Y, LI S Q, et al.Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst[J]. Nature energy, 2021, 6(9): 904-912. [10] LINDQUIST G A, XU Q C, OENER S Z, et al.Membrane electrolyzers for impure-water splitting[J]. Joule, 2020, 4(12): 2549-2561. [11] GUO J X, ZHENG Y, HU Z P, et al.Direct seawater electrolysis by adjusting the local reaction environment of a catalyst[J]. Nature energy, 2023, 8(3): 264-272. [12] ZHAO Z, LIU H, GAO W, et al.Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2018, 140(29): 9046-9050. [13] WAN R D, LUO M, WEN J B, et al.Pt-Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation[J]. Journal of energy chemistry, 2022, 69: 44-53. [14] WANG Y D, WU W, CHEN R Z, et al.Reduced water dissociation barrier on constructing Pt-Co/CoOx interface for alkaline hydrogen evolution[J]. Nano research, 2022, 15(6): 4958-4964. [15] BALAJI R, KANNAN B S, LAKSHMI J, et al.An alternative approach to selective sea water oxidation for hydrogen production[J]. Electrochemistry communications, 2009, 11(8): 1700-1702. [16] FUJIMURA K, IZUMIYA K, KAWASHIMA A, et al.Anodically deposited manganese-molybdenum oxide anodes with high selectivity for evolving oxygen in electrolysis of seawater[J]. Journal of applied electrochemistry, 1999, 29(6): 769-775. [17] KUANG Y, KENNEY M J, MENG Y, et al.Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels[J]. Proceedings of the Natioral Acadeng of Sciences of the United States of America, 2019, 116(14): 6624-6629. [18] YU L, WU L B, MCELHENNY B, et al.Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting[J]. Energy & environmental science, 2020, 13(10): 3439-3446. [19] ZHANG S, WANG Y, LI S, et al.Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode[J]. Nature communications, 2023, 14(1): 4822. [20] XU W, WANG Z, LIU P, et al.Ag nanoparticle-induced surface chloride immobilization strategy enables stable seawater electrolysis[J]. Advanced materials, 2024, 36(2): e2306062. [21] LIU W, YU J, SENDEKU M G, et al.Ferricyanide armed anodes enable stable water oxidation in saturated saline water at 2 A/cm2[J]. Angew. Chem. Int. Ed. Engl., 2023, 62(40): e202309882. [22] SUN F, QIN J, WANG Z, et al.Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation[J]. Nature communications, 2021, 12(1): 4182. [23] MAO Q Q, DENG K, YU H J, et al.In situ reconstruction of partially hydroxylated porous Rh metallene for ethylene glycol-assisted seawater splitting[J]. Advanced functional materials, 2022, 32(31): 2201081. [24] XIE H, ZHAO Z, LIU T, et al.A membrane-based seawater electrolyser for hydrogen generation[J]. Nature, 2022, 612(7941): 673-678. [25] SHI H, WANG T, LIU J, et al.A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis[J]. Nature communications, 2023, 14(1): 3934. [26] LI P, WANG S, SAMO I A, et al.Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production[J]. Research (wash D C), 2020, 2020: 2872141. [27] 刘国永, 任永锋, 薛宇, 等. 基于PEM电解槽的风氢耦合系统能量管理研究[J]. 太阳能学报, 2024, 45(7): 240-248. LIU G Y, REN Y F, XUE Y, et al.Research on energy management of wind-hydrogen coupling system based on PEM electrolyzer[J]. Acta energiae solaris sinica, 2024, 45(7): 240-248. [28] 胡鹏, 李志川, 李子航, 等. 深远海原位电解海水制氢的战略及技术研究[J]. 太阳能学报, 2024, 45(8): 63-70. HU P, LI Z C, LI Z H, et al.Research on strategic and technical of hydrogen production by deep offshore in situ electrolysis of seawater[J]. Acta energiae solaris sinica, 2024, 45(8): 63-70.