CO-PYROLYSIS CHARACTERISTICS AND KINETICS ANALYSIS OF PELLETS MADE FROM SEMI-COKE POWDER AND BIOMASS
Zhang Naixin1,2, Zhu Hongyu2, Lang Lin2, Liu Huacai2, Yin Xiuli2, Gong Bin1
Author information+
1. School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; 2. CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Semi-coke biomass briquette was prepared by mixing different ratios of fine semi-coke and herb residue, so as to realize the high-efficiency and low-carbon heat conversion and utilization of fine semi-coke. Thermogravimetric analysis revealed synergistic promotional effects during co-pyrolysis under different blending ratios and heating rates. The mechanical blending and briquetting process of semi-coke powder and herb residue partially depolymerized the native crystalline ctracture of cellulose, reducing the cellulose content and crystallinity of the briquettes, thereby lowering the pyrolysis activation energy. The co-pyrolysis kinetics was analyzed by Starink method and the activation energy of the pyrolysis reaction was calculated. The reaction order n and pre-exponential tactor A were determined using the generalized master with the modified Dn-Jader model to obtain the reaction series n and the pre-exponential factor A. It is found that the activation energy of pyrolysis decreased as the proportion of fine semi-coke in the herb residue increased. When the herb residue and fine semi-coke were mixed at a ratio of 2∶1, the pyrolysis activation energy of the formed briquettes is only 162.22 kJ/mol, not only significantly lower than the pyrolysis activation energy of fine semi-coke 386.2 kJ/mol, but also significantly lower than the pyrolysis activation energy of herb residue 174.9 kJ/mol; At other different mixing ratios, the activation energy of co-pyrolysis was less than the theoretical value, which indicated that the co-pyrolysis process of herb residue and fine semi-coke is synergistic. When the proportion of fine semi-coke ≤50%, the heating rate affects the synergistic effect of co-pyrolysis more significantly, and the higher the heating rate, the greater the characteristic index of co-pyrolysis. Finally, it is found that the strength of briquette and coal-char pellets of samples decreases with the increase of the proportion of fine semi-coke in the herb residue increased, and it was found that when the mixing ratio of the herb residue and fine semi-coke was 4∶1, the compressive strength of briquette and coal-char pellets of semi-coke biomass briquette were the highest, reaching 715.5 N and 158.3 N respectively.
Zhang Naixin, Zhu Hongyu, Lang Lin, Liu Huacai, Yin Xiuli, Gong Bin.
CO-PYROLYSIS CHARACTERISTICS AND KINETICS ANALYSIS OF PELLETS MADE FROM SEMI-COKE POWDER AND BIOMASS[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 678-689 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2062
中图分类号:
TK6
TQ530.2
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YANG Z Y, NING H L, LIU J P, et al.Surface modification on semi-coke-based activated carbon for enhanced separation of CH4/N2[J]. Chemical engineering research and design, 2020, 161: 312-321. [2] 朱菊芬, 李健, 郑小霞, 等. 兰炭基活性炭负载TiO2光催化剂的制备及性能研究[J]. 当代化工, 2021, 50(10): 2350-2354. ZHU J F, LI J, ZHENG X X, et al.Preparation and photocatalytic activity of TiO2 supported on semi-coke-based activated carbon[J]. Contemporary chemical industry, 2021, 50(10): 2350-2354. [3] 我的钢铁网,Mysteel年报:2023年国内兰炭市场回顾与2024年展望[R/OL]. 2024-01-08,https://jiaotan.mysteel.com/a/24010815/D9D6727F2EA0E715.html. My Steel Website. Mysteel annual report: review of China's Semi-Coke Market in2023 and Outlook for 2024[R/OL]. 2024-01-08, https://jiaotan.mysteel.com/a/24010815/D9D6727F2EA0E715.html. [4] WU L, ZHOU J, YANG R R, et al.Novel approach for enhanced catalytic microwave pyrolysis of low-rank coal[J]. Energy & fuels, 2020, 34(8): 9540-9551. [5] LAN X Z,YANG Y, SOMG Y H,et al.Energy consumption analysis of carbonization process of semi coke in northern Shaan Xi[J]. Coal conversion, 2009, 32(2) : 18-21. [6] 蒋绪, 侯党社, 杨磊, 等. 兰炭基型煤共炭化热解动力学初步研究[J]. 云南化工, 2017, 44(6): 28-30. JIANG X, HOU D S, YANG L, et al.Preliminary study on the co-carbonization pyrolysis kinetics of blue-coke briquettes[J]. Yunnan chemical technology, 2017, 44(6): 28-30. [7] 李健, 马炜, 闫龙, 等. 兰炭基生物质型煤成型工艺及性能的研究[J]. 当代化工, 2019, 48(8): 1694-1699, 1703. LI J, MA W, YAN L, et al.Study on molding process and properties of semi-coke biomass briquette[J]. Contemporary chemical industry, 2019, 48(8): 1694-1699, 1703. [8] 李春桃, 龙建, 蒋伟, 等. 复合生物质型煤粘结剂研究[J]. 中国煤炭, 2010, 36(2): 80-83, 87. LI C T, LONG J, JIANG W, et al.The preparation process of a compound bio-briquette[J]. China coal, 2010, 36(2): 80-83, 87. [9] 黄光许, 张如意, 谌伦建. 小麦秸秆作型煤粘结剂的试验研究[J]. 中国煤炭, 2005, 31(3): 52-54. HUANG G X, ZHANG R Y, CHEN L J.Experimental study on wheat straw as briquette binder[J]. China coal, 2005, 31(3): 52-54. [10] 路广军, 郭彦霞, 程芳琴, 等. 生物质秸秆作为型煤粘结剂的研究[J]. 节能技术, 2008, 26(2): 107-111. LU G J, GUO Y X, CHENG F Q, et al.Study on the biomass used as briquette binder[J]. Energy conservation technology, 2008, 26(2): 107-111. [11] 王明峰, 叶国辉, 蒋恩臣, 等. 桉树木屑热压成型特性研究[J]. 太阳能学报, 2018, 39(10): 2884-2890. WANG M F, YE G H, JIANG E C, et al.Research of hot press forming characteristics of eucalyptus sawdust[J]. Acta energiae solaris sinica, 2018, 39(10): 2884-2890. [12] 孙云娟, 蒋剑春, 赵淑蘅, 等. 稻壳与褐煤共热解动力学研究[J]. 太阳能学报, 2016, 37(11): 2747-2753. SUN Y J, JIANG J C, ZHAO S H, et al.Kinetic analysis of rice husk and lignite during co-pyrolysis[J]. Acta energiae solaris sinica, 2016, 37(11): 2747-2753. [13] 刘晓锋, 杨攀博, 王健, 等. 麦秆与褐煤共热解特性及动力学分析[J]. 太阳能学报, 2021, 42(9): 410-415. LIU X F, YANG P B, WANG J, et al.Co-pyrolysis characteristics and kinetic analysis of wheat straw and lignite[J]. Acta energiae solaris sinica, 2021, 42(9): 410-415. [14] 王燕杰, 应浩, 孙云娟, 等. 烘焙木屑与褐煤共热解特性研究[J]. 太阳能学报, 2015, 36(4): 981-987. WANG Y J, YING H, SUN Y J, et al.Study on co-pyrolysis characteristics of torrefied sawdust and lignite[J]. Acta energiae solaris sinica, 2015, 36(4): 981-987. [15] HAYKIRI-ACMA H, YAMAN S.Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis[J]. Fuel, 2007, 86(3): 373-380. [16] HAYKIRI-ACMA H, YAMAN S.Interaction between biomass and different rank coals during co-pyrolysis[J]. Renewable energy, 2010, 35(1): 288-292. [17] 阎维平, 陈吟颖. 生物质混合物与煤共热解的协同特性[J]. 中国电机工程学报, 2007, 27(2): 80-86. YAN W P, CHEN Y Y.Interaction performance of co-pyrolysis of biomass mixture and coal of different rank[J]. Proceedings of the CSEE, 2007, 27(2): 80-86. [18] 王彦顺, 肖瑞瑞, 丛兴顺, 等. 生物质与煤共热解动力学特性研究[J]. 广东化工, 2023, 50(5): 20-21, 16. WANG Y S, XIAO R R, CONG X S, et al.Study on the kinetics of co-pyrolysis of biomass and coal[J]. Guangdong chemical industry, 2023, 50(5): 20-21, 16. [19] 何玉远. 煤与生物质共热解共气化过程中硫、氮的迁移规律研究[D]. 郑州: 郑州大学, 2018. HE Y Y.Research on the transformation of sulfur and nitrogen during co-pyrolysis and co-gasification between coal and biomass[D]. Zhengzhou: Zhengzhou University, 2018. [20] JIANG Z H, LIU Z J, FEI B H, et al.The pyrolysis characteristics of moso bamboo[J]. Journal of analytical and applied pyrolysis, 2012, 94: 48-52. [21] ZHAO H, YAN H X, DONG S S, et al.Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue[J]. Journal of thermal analysis and calorimetry, 2013, 111(3): 1685-1690. [22] AGRAWAL A, CHAKRABORTY S.A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis[J]. Bioresource technology, 2013, 128: 72-80. [23] WONGSIRIAMNUAY T, TIPPAYAWONG N.Thermogravimetric analysis of giant sensitive plants under air atmosphere[J]. Bioresource technology, 2010, 101(23): 9314-9320. [24] 林木森, 蒋剑春. 杨木屑热解过程及动力学研究[J]. 太阳能学报, 2008, 29(9): 1135-1138. LIN M S, JIANG J C.Process and kinetics of poplar sawdust pyrolysis[J]. Acta energiae solaris sinica, 2008, 29(9): 1135-1138. [25] ÇEPELIOĞULLAR Ö, PÜTÜN A E. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis[J]. Energy conversion and management, 2013, 75: 263-270. [26] ZHOU W H, BAI B, CHEN G Y, et al.Study on catalytic properties of potassium carbonate during the process of sawdust pyrolysis[J]. International journal of hydrogen energy, 2018, 43(30): 13829-13841. [27] DUAN Y, LI J, YANG X, et al.Kinetic analysis on the non-isothermal dehydration by integral master-plots method and TG-FTIR study of zinc acetate dihydrate[J]. Journal of analytical and applied pyrolysis, 2008, 83(1): 1-6. [28] 秦丽元, 张世慧, 高忠志, 等. 生物炭与木质素混合成型及其燃烧特性研究[J]. 农业机械学报, 2017, 48(4): 276-283. QIN L Y, ZHANG S H, GAO Z Z, et al.Molding fuel and combustion characteristics of biochar and lignin[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 276-283. [29] 李伟振, 姜洋, 王微, 等. 温度对4种典型生物质成型特性的影响[J]. 生物质化学工程, 2019, 53(5): 27-33. LI W Z, JIANG Y, WANG W, et al.Effects of temperature on pelletization of four typical types of biomass[J]. Biomass chemical engineering, 2019, 53(5): 27-33. [30] BACH Q V, CHEN W H.Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review[J]. Bioresource technology, 2017, 246: 88-100. [31] 邱家用, 居殿春, 殷天颖, 等. 非线性等转化率法木质炭和烟煤共气化动力学[J]. 太阳能学报, 2018, 39(11): 3155-3162. QIU J Y, JU D C, YIN T Y, et al.Kinetic analysis of co-gasification of woody biochar and bituminite by integral isoconversional non-linear method[J]. Acta energiae solaris sinica, 2018, 39(11): 3155-3162. [32] STARINK M J.The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods[J]. Thermochimica acta, 2003, 404(1/2): 163-176. [33] STARINK M J.A new method for the derivation of activation energies from experiments performed at constant heating rate[J]. Thermochimica acta, 1996, 288(1/2): 97-104. [34] KHAWAM A, FLANAGAN D R.Solid-state kinetic models: basics and mathematical fundamentals[J]. The journal of physical chemistry B, 2006, 110(35): 17315-17328. [35] KOGA N, CRIADO J M.Kinetic analyses of solid-state reactions with a particle-size distribution[J]. Journal of the American Ceramic Society, 1998, 81(11): 2901-2909. [36] 孙云娟. 生物质与煤共热解气化行为特性及动力学研究[D]. 北京: 中国林业科学研究院, 2013. SUN Y J.Study on the charicteristic and kinetic of biomass and coal co-pyrolysis[D]. Beijing: Chinese Academy of Forestry, 2013. [37] 戴重阳, 田宜水, 胡二峰, 等. 生物质与低阶煤共热解特性研究及其技术进展[J]. 太阳能学报, 2021, 42(12): 326-333. DAI C Y, TIAN Y S, HU E F, et al.Research on co-pyrolysis characteristics of biomass and low-rank coal and its technical progress[J]. Acta energiae solaris sinica, 2021, 42(12): 326-333. [38] LIN Y, LIAO Y F, YU Z S, et al.Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA-FTIR analysis[J]. Energy conversion and management, 2016, 118: 345-352. [39] ZHU H Y, LANG L, FANG G, et al.Thermogravimetric characteristics and kinetics of herb residues catalyzed by potassium carbonate[J]. Journal of analytical and applied pyrolysis, 2021, 156: 105170. [40] FANG S W, YU Z S, LIN Y S, et al.Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste[J]. Energy conversion and management, 2015, 101: 626-631. [41] 苏秋丽, 蒋剑春, 冯君锋, 等. 木质纤维生物质加压液化制备烷基糖苷类精细化学品过程研究[J]. 太阳能学报, 2018, 39(12): 3483-3489. SU Q L, JIANG J C, FENG J F, et al.Study on preparation of alkyl glycoside fine chemicals by pressurized liquefaction of lignocellulosic biomass[J]. Acta energiae solaris sinica, 2018, 39(12): 3483-3489. [42] 张立强, 李凯, 宋飞跃, 等. 黄豆秆两级连续热解特性研究[J]. 太阳能学报, 2019, 40(7): 1989-1996. ZHANG L Q, LI K, SONG F Y, et al.Research on two-step consecutive pyrolysis characteristics of soybean stalks[J]. Acta energiae solaris sinica, 2019, 40(7): 1989-1996. [43] 任海伟, 邢雪晔, 周启芬, 等. 中药渣制备微晶纤维素工艺优化及其结构表征[J]. 太阳能学报, 2022, 43(1): 196-204. REN H W, XING X Y, ZHOU Q F, et al.Optimization of microcrystalline cellulose preparation from Chinese herb residues and structure characterization[J]. Acta energiae solaris sinica, 2022, 43(1): 196-204. [44] 何文强, 武小芬, 刘云, 等. 甲酸法分离南荻木质纤维素组分及其结构分析[J]. 太阳能学报, 2021, 42(11): 415-420. HE W Q, WU X F, LIU Y, et al.Fractionation and structural analysis of main components from Triarrhena lutarioriparia by formic acid[J]. Acta energiae solaris sinica, 2021, 42(11): 415-420. [45] 冷尔唯, 龚勋, 张扬, 等. 纤维素热解机理研究进展: 以中间态纤维素为核心的纤维素演变[J]. 化工学报, 2018, 69(1): 239-248. LENG E W, GONG X, ZHANG Y, et al.Progress of cellulose pyrolysis mechanism: cellulose evolution based on intermediate cellulose[J]. CIESC journal, 2018, 69(1): 239-248. [46] XU F X, ZHANG X, ZHANG F, et al.TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures[J]. Fuel, 2020, 268: 117365. [47] LI S D, CHEN X L, LIU A B, et al.Co-pyrolysis characteristic of biomass and bituminous coal[J]. Bioresource technology, 2015, 179: 414-420.
基金
中国科学院战略性先导科技专项(XDA29010400); 广州市科技计划(2023B03J0004); 中国科学院洁净能源创新研究院-榆林学院联合基金(Grant.YLU-DNL Fund 2021004)