基于分布式多策略粒子群优化算法的多区域互联经济调度

任旭阳, 卜旭辉, 尹艳玲, 刘静滑

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 99-108.

PDF(2181 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2181 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 99-108. DOI: 10.19912/j.0254-0096.tynxb.2024-0018

基于分布式多策略粒子群优化算法的多区域互联经济调度

  • 任旭阳1, 卜旭辉1, 尹艳玲2, 刘静滑1
作者信息 +

DISTRIBUTED MULTI-STRATEGY PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MULTI-AREA INTERCONNECTION ECONOMIC DISPATCHING

  • Ren Xuyang1, Bu Xuhui1, Yin Yanling2, Liu Jinghua1
Author information +
文章历史 +

摘要

为提高带有风电、光伏发电和储能单元的多区域互联经济调度问题求解精度,加强各区域的隐私保护能力,提出一种分布式多策略粒子群优化算法。首先,为提高粒子群优化算法的全局搜索能力,利用竞争机制将种群分区,根据分区使用多策略方案,增强算法多样性。其次,构建带有风电、光伏发电和储能单元的多区域互联经济调度模型,各区域之间通过边界联络线传输信息,然后提出一种分布式方法应用于多策略粒子群优化算法中,各子算法分别求解与各区域相关的子问题。最后,将IEEE39节点系统分为两区域与三区域互联系统,并在修改后的IEEE39节点系统上验证算法性能,通过与其他3种优化算法进行对比分析,实验结果验证了基于竞争分区的粒子群优化算法的有效性和分布式方法的可行性。

Abstract

This paper proposes a distributed multi-strategy particle swarm optimization algorithm to improve the solution accuracy of solving the multi-area interconnected economic dispatch problem involving wind power, photovoltaic power generation, and energy storage units. Additionally, the proposed approach enhances the privacy protection capability among areas. Firstly, to improve the global search ability of the particle swarm optimization algorithm, the population is partitioned using a competition mechanism. Then, different strategies are applied according to the partition results to enhance the algorithm diversity. Secondly, a multi-area interconnected economic dispatch model with wind power, photovoltaic power generation and energy storage units is constructed, where information is transmitted between areas through tie-lines, and then a distributed method is proposed to be applied in a multi-strategy particle swarm optimization algorithm, where each sub-algorithm solves the sub-problems related to each area separately. Finally, the IEEE39-bus system is divided into two-area and three-area interconnected systems, and the performance of the algorithm is verified on the modified IEEE 39-bus system, and the experimental results verify the effectiveness of the particle swarm optimization algorithm based on competitive partitioning and the feasibility of the distributed approach by comparing and analyzing the algorithms with the other three optimization algorithms.

关键词

互联电力系统 / 调度 / 粒子群优化 / 分布式优化 / 竞争机制 / 联络线约束处理

Key words

electric power system interconnection / scheduling / particle swarm optimization / distributed optimization / competitive mechanism / tie line constraint handling

引用本文

导出引用
任旭阳, 卜旭辉, 尹艳玲, 刘静滑. 基于分布式多策略粒子群优化算法的多区域互联经济调度[J]. 太阳能学报. 2025, 46(5): 99-108 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0018
Ren Xuyang, Bu Xuhui, Yin Yanling, Liu Jinghua. DISTRIBUTED MULTI-STRATEGY PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MULTI-AREA INTERCONNECTION ECONOMIC DISPATCHING[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 99-108 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0018
中图分类号: TM73   

参考文献

[1] 张国斌, 陈玥, 张佳辉, 等. 风-光-水-火-抽蓄联合发电系统日前优化调度研究[J]. 太阳能学报, 2020, 41(8): 79-85.
ZHANG G B, CHEN Y, ZHANG J H, et al.Research on optimization of day-ahead dispatching of wind power-photovoltaic-hydropower-thermal power-pumped storage combined power generation system[J]. Acta energiae solaris sinica, 2020, 41(8): 79-85.
[2] 李运龙, 李志刚, 郑杰辉. 考虑风电不确定性和相关性的多区域电网分布鲁棒经济调度[J]. 电力自动化设备, 2021, 41(8): 97-104.
LI Y L, LI Z G, ZHENG J H.Distributionally robust economic dispatch of multi-regional power grid considering uncertainty and correlation of wind power[J]. Electric power automation equipment, 2021, 41(8): 97-104.
[3] 赵文猛, 刘明波, 周保荣, 等. 含风电接入多区域电力系统的分散式随机动态经济调度方法[J]. 中国电机工程学报, 2017, 37(24): 7087-7098.
ZHAO W M, LIU M B, ZHOU B R, et al.Decentralized stochastic dynamic economic dispatch for multi-area power systems with wind power integrated[J]. Proceedings of the CSEE, 2017, 37(24): 7087-7098.
[4] 张容畅, 韩丽, 刘文涛, 等. 基于改进径向移动算法的含风电场电力系统优化调度[J]. 太阳能学报, 2020, 41(1): 225-235.
ZHANG R C, HAN L, LIU W T, et al.Power system optimal dispatch considering wind farms based on improved radial movement optimization[J]. Acta energiae solaris sinica, 2020, 41(1): 225-235.
[5] 陈旭, 鲁启. 基于衍生搜索政治优化算法解决含可再生能源的多区域经济调度问题[J]. 电网技术, 2024, 48(4): 1583-1597.
CHEN X, LU Q.Derivative search-based political optimization algorithm for multi-area economic dispatch considering renewable energy[J]. Power system technology, 2024, 48(4): 1583-1597.
[6] 黄强, 李锦焙, 孟安波, 等. 基于改进纵横交叉算法的电力系统多区域环境经济调度[J]. 电网与清洁能源, 2017, 33(4): 11-18.
HUANG Q, LI J B, MENG A B, et al.Improved crisscross optimization algorithm for the multi-area economic/emission dispatch[J]. Power system and clean energy, 2017, 33(4): 11-18.
[7] AZIZIVAHED A, RAZAVI S E, AREFI A, et al.Risk-oriented multi-area economic dispatch solution with high penetration of wind power generation and compressed air energy storage system[J]. IEEE transactions on sustainable energy, 2020, 11(3): 1569-1578.
[8] LAI X W, XIE L, XIA Q, et al.Decentralized multi-area economic dispatch via dynamic multiplier-based Lagrangian relaxation[J]. IEEE transactions on power systems, 2015, 30(6): 3225-3233.
[9] QIN J H, WAN Y N, YU X H, et al.A Newton method-based distributed algorithm for multi-area economic dispatch[J]. IEEE transactions on power systems, 2020, 35(2): 986-996.
[10] CHENG R, JIN Y C.A competitive swarm optimizer for large scale optimization[J]. IEEE transactions on cybernetics, 2015, 45(2): 191-204.
[11] WANG F, WANG X J, SUN S L.A reinforcement learning level-based particle swarm optimization algorithm for large-scale optimization[J]. Information sciences, 2022, 602: 298-312.
[12] CHEN M Y, TAN Y.SF-FWA: a self-adaptive fast fireworks algorithm for effective large-scale optimization[J]. Swarm and evolutionary computation, 2023, 80: 101314.
[13] YIN L F, WANG T, WANG S L, et al.Interchange objective value method for distributed multi-objective optimization: theory, application, implementation[J]. Applied energy, 2019, 239: 1066-1076.
[14] 李军徽, 邵岩, 朱星旭, 等. 计及碳排放量约束的多区域互联电力系统分布式低碳经济调度[J]. 电工技术学报, 2023, 38(17): 4715-4728.
LI J H, SHAO Y, ZHU X X, et al.Carbon emissions constraint distributed low-carbon economic dispatch of power system[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4715-4728.
[15] 陆文甜, 刘明波, 林舜江, 等. 基于分布式内点法的多区域互联电力系统最优潮流分散式求解[J]. 中国电机工程学报, 2016, 36(24): 6828-6837.
LU W T, LIU M B, LIN S J, et al.Decentralized solution for optimal power flow of multi-area interconnected power systems based on distributed interior point method[J]. Proceedings of the CSEE, 2016, 36(24): 6828-6837.
[16] 李聪, 秦立军. 基于改进粒子群算法的混合储能独立调频的容量优化研究[J]. 太阳能学报, 2023, 44(1): 426-434.
LI C, QIN L J.Sizing optimization for hybrid energy storage system independently participating in regulation market using improved particle swarm optimization[J]. Acta energiae solaris sinica, 2023, 44(1): 426-434.
[17] 梁静, 葛士磊, 瞿博阳, 等. 求解电力系统经济调度问题的改进粒子群优化算法[J]. 控制与决策, 2020, 35(8): 1813-1822.
LIANG J, GE S L, QU B Y, et al.Improved particle swarm optimization algorithm for solving power system economic dispatch problem[J]. Control and decision, 2020, 35(8): 1813-1822.
[18] WANG B, ZHANG P F, HE Y F, et al.Scenario-oriented hybrid particle swarm optimization algorithm for robust economic dispatch of power system with wind power[J]. Journal of systems engineering and electronics, 2022, 33(5): 1143-1150.
[19] 帅茂杭, 熊国江, 胡晓, 等. 基于改进多目标骨干粒子群算法的电力系统环境经济调度[J]. 控制与决策, 2022, 37(4): 997-1004.
SHUAI M H, XIONG G J, HU X, et al.Economic emission dispatch of power system based on improved bare-bone multi-objective particle swarm optimization algorithm[J]. Control and decision, 2022, 37(4): 997-1004.
[20] SONG X F, ZHANG Y, GONG D W, et al.A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data[J]. IEEE transactions on cybernetics, 2022, 52(9): 9573-9586.
[21] 张伟, 黄卫民. 基于SAPSO算法的RBF神经网络设计[J]. 控制与决策, 2021, 36(9): 2305-2312.
ZHANG W, HUANG W M.Design of RBF neural network based on SAPSO algorithm[J]. Control and decision, 2021, 36(9): 2305-2312.
[22] DONG Y C, ZHANG H L, WANG C, et al.An adaptive state transition algorithm with local enhancement for global optimization[J]. Applied soft computing, 2022, 121: 108733.
[23] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 1995: 1942-1948.
[24] MIRJALILI S, MIRJALILI S, LEWIS A.Grey wolf optimizer[J]. Adv eng softw, 2014, 69: 46-61.
[25] STORN R, PRICE K.Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[J]. Journal of global optimization, 1997, 23(1): 341-359.
[26] BASU M.Dynamic economic emission dispatch using nondominated sorting genetic algorithm-Ⅱ[J]. International journal of electrical power & energy systems, 2008, 30(2): 140-149.

基金

国家自然科学基金(62273133); 河南省自然科学基金杰出青年基金(242300421053); 河南省科技攻关项目(242102210036); 河南省高校基本科研业务费项目(NSFRF240608)

PDF(2181 KB)

Accesses

Citation

Detail

段落导航
相关文章

/