PEMFC阴极蛇形通道两相流动特性的数值研究

秦磊, 郭雪岩

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 21-28.

PDF(3145 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3145 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 21-28. DOI: 10.19912/j.0254-0096.tynxb.2024-0037

PEMFC阴极蛇形通道两相流动特性的数值研究

  • 秦磊, 郭雪岩
作者信息 +

NUMERICAL STUDY ON TWO-PHASE FLOW CHARACTERISTICS IN SERPENTINE CHANNELS OF PEMFC

  • Qin Lei, Guo Xueyan
Author information +
文章历史 +

摘要

为研究质子交换膜燃料电池(PEMFC)在不同工况条件下的水管理特性,基于VOF方法对PEMFC阴极蛇形通道中的两相流动过程进行数值研究,采用在通道底面挖取入水孔的方式,通过设定不同相态比例的水为入口条件,旨在分析阴极通道中不同相态比例混合物的两相流动状态和输运过程对燃料电池水管理的影响。结果表明:通过分析通道入口处的水团分离特性,发现不同相态比例对水团在入口处的分离时间、分离体积有显著的影响,并发现入口处水团的两种分离方式以及壁面偏好差异,尤其是U型管处堆积差异的现象更加明显;通道中观测到的特征流型与两种分离方式有关,并且影响着通道的排水性能。

Abstract

This study investigates the water management characteristics of proton exchange membrane fuel cells (PEMFC) under varying operational conditions. A numerical analysis of two-phase flow within the cathode’s serpentine channels was conducted using the Volume of Fluid (VOF) method. Water inlet holes were created at the bottom of the channel and different phase ratios were set as inlet conditions. The objective was to examine the impact of two-phase flow and transport processes of mixtures with varying phase ratios on water management.The results reveal that different phase ratios significantly influence the separation time and volume of water at the channel inlet. Two distinct separation pattern and wall preference discrepancies were identified, with significant accumulation differences observed at U-shaped tube sections. The characteristic flow patterns within the channel correlate with the separation patterns and influence the channel's drainage capabilities.

关键词

质子交换膜燃料电池 / 两相流 / 水管理 / VOF / 汽水混合物

Key words

PEMFC / two-phase flow / water management / VOF / steam-water mixture

引用本文

导出引用
秦磊, 郭雪岩. PEMFC阴极蛇形通道两相流动特性的数值研究[J]. 太阳能学报. 2025, 46(5): 21-28 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0037
Qin Lei, Guo Xueyan. NUMERICAL STUDY ON TWO-PHASE FLOW CHARACTERISTICS IN SERPENTINE CHANNELS OF PEMFC[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 21-28 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0037
中图分类号: TK911.4   

参考文献

[1] 王志福, 徐崧, 罗崴. 基于动态规划的燃料电池车能量管理策略研究[J]. 太阳能学报, 2023, 44(10): 550-556.
WANG Z F, XU S, LUO W.Research on energy management strategy of fuel cell vehicle based on dynamic programming[J]. Acta energiae solaris sinica, 2023, 44(10): 550-556.
[2] PEI H C, MENG K, CHANG H W, et al.Performance improvement in a proton exchange membrane fuel cell with separated coolant flow channels in the anode and cathode[J]. Energy conversion and management, 2019, 187: 76-82.
[3] STAFFELL I, SCAMMAN D, VELAZQUEZ ABAD A, et al.The role of hydrogen and fuel cells in the global energy system[J]. Energy & environmental science, 2019, 12(2): 463-491.
[4] POURRAHMANI H, YAVARINASAB A, SIAVASHI M, et al.Progress in the proton exchange membrane fuel cells (PEMFCs) water/thermal management: from theory to the current challenges and real-time fault diagnosis methods[J]. Energy reviews, 2022, 1(1): 100002.
[5] QIN W S, DONG F, ZHANG S H, et al.Effect of multi-channel shape design on dynamic behavior of liquid water in PEMFC[J]. International journal of hydrogen energy, 2024, 50: 1465-1483.
[6] FERREIRA R B, FALCÃO D S, OLIVEIRA V B, et al. 1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell[J]. Applied energy, 2017, 203: 474-495.
[7] 舒展宏, 陈蕊, 宋浩, 等. 质子交换膜电解池二维两相流综合模拟研究[J]. 太阳能学报, 2023, 44(11): 450-458.
SHU Z H, CHEN R, SONG H, et al.Two-dimensional comprehensive simulation study of two-phase flow in proton exchange membrane electrolyzer cell[J]. Acta energiae solaris sinica, 2023, 44(11): 450-458.
[8] CHEN R X, QIN Y Z, MA S H, et al.Numerical simulation of liquid water emerging and transport in the flow channel of PEMFC using the volume of fluid method[J]. International journal of hydrogen energy, 2020, 45(54): 29861-29873.
[9] 叶可, 颜永文, 李君, 等. 基于不同流道的PEMFC传质与水热平衡数值模拟[J]. 太阳能学报, 2021, 42(10): 349-354.
YE K, YAN Y W, LI J, et al.Numerical simulation of mass transfer and hydrothermal balance in pemfc based on different flow channels[J]. Acta energiae solaris sinica, 2021, 42(10): 349-354.
[10] 张拴羊, 杨其国, 徐洪涛, 等. 不同流场结构对PEMFC性能影响的模拟研究[J]. 太阳能学报, 2023, 44(8): 62-67.
ZHANG S Y, YANG Q G, XU H T, et al.Numerical simulation on effect of different flow fields on performance of PEMFC[J]. Acta energiae solaris sinica, 2023, 44(8): 62-67.
[11] 王珂, 张拴羊, 徐洪涛, 等. 基于神经元的PEMFC仿生流道性能模拟研究[J]. 太阳能学报, 2022, 43(6): 454-459.
WANG K, ZHANG S Y, XU H T, et al.Simulation study of bionic channel-inspired of proton exchange membrane fuel cell based on neuron[J]. Acta energiae solaris sinica, 2022, 43(6): 454-459.
[12] 包志铭, 焦魁. 泡沫材料流场内两相流动的数值模拟[J]. 工程热物理学报, 2020, 41(4): 913-918.
BAO Z M, JIAO K.Numerical simulation of two-phase flow in foam material flow field[J]. Journal of engineering thermophysics, 2020, 41(4): 913-918.
[13] ZHANG G B, BAO Z M, XIE B, et al.Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field[J]. International journal of hydrogen energy, 2021, 46(3): 2978-2989.
[14] STRAUBHAAR B, PAUCHET J, PRAT M.Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cells[J]. International journal of heat and mass transfer, 2016, 102: 891-901.
[15] WANG Q Q, TANG F M, LI B, et al.Numerical analysis of static and dynamic heat transfer behaviors inside proton exchange membrane fuel cell[J]. Journal of power sources, 2021, 488: 229419.
[16] 唐捷旭. 车用增程式燃料电池混合动力系统能量管理策略优化研究[D]. 镇江: 江苏大学, 2021.
TANG J X.Study on optimization of energy management strategy for fuel cell range extended hybrid power system for vehicle[D]. Zhenjiang: Jiangsu University, 2021.
[17] BRACKBILL J U, KOTHE D B, ZEMACH C.A continuum method for modeling surface tension[J]. Journal of computational physics, 1992, 100(2): 335-354.
[18] YOUNGS D L.Time-dependent multi-material flow with large fluid distortion[M]. Numerical methods in fluid dynamics, 1982.
[19] LE A D, ZHOU B, SHIU H R, et al.Numerical simulation and experimental validation of liquid water behaviors in a proton exchange membrane fuel cell cathode with serpentine channels[J]. Journal of power sources, 2010, 195(21): 7302-7315.
[20] JARAUTA A, RYZHAKOV P.Challenges in computational modeling of two-phase transport in polymer electrolyte fuel cells flow channels: a review[J]. Archives of computational methods in engineering, 2018, 25(4): 1027-1057.
[21] MORTAZAVI M.Two-phase flow pressure drop in PEM fuel cell flow channel bends[J]. International journal of multiphase flow, 2021, 143: 103759.
[22] KIM J, KIM W.Numerical investigation of gas-liquid two-phase flow inside PEMFC gas channels with rectangular and trapezoidal cross sections[J]. Energies, 2018, 11(6): 1403.
[23] 徐一凡, 彭林法. 燃料电池流道内液滴流动建模与分析[J]. 电源技术, 2019, 43(5): 815-818.
XU Y F, PENG L F.Modeling and analysis of droplet dynamics in gas channel of PEMFC[J]. Chinese journal of power sources, 2019, 43(5): 815-818.

PDF(3145 KB)

Accesses

Citation

Detail

段落导航
相关文章

/