添加剂调控光合发酵制氢进展与展望

陈冠益, 黄加亮, 穆兰, 党超, 武婉婷, 陶俊宇

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 1-14.

PDF(2498 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2498 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 1-14. DOI: 10.19912/j.0254-0096.tynxb.2024-0043

添加剂调控光合发酵制氢进展与展望

  • 陈冠益1,2, 黄加亮2,3, 穆兰1,2, 党超4, 武婉婷2,3, 陶俊宇1,2
作者信息 +

PROGRESS AND PROSPECTS OF ADDITIVE-REGULATED PHOTOSYNTHETIC FERMENTATION FOR HYDROGEN PRODUCTION

  • Chen Guanyi1,2, Huang Jialiang2,3, Mu Lan1,2, Dang Chao4, Wu Wanting2,3, Tao Junyu1,2
Author information +
文章历史 +

摘要

简述光合细菌制氢过程中涉及的光合反应、底物代谢和固氮酶产氢3部分机理;总结分析光合制氢过程添加剂调控的研究成果,归纳4种添加剂调控的主要途径:光谱调控、电子调控、代谢调控和环境调控;重点阐述金属及非金属两大类不同添加剂的作用效果、机制及优势与限制;最后,对添加剂促进光合发酵制氢技术的发展趋势和未来研究方向进行分析展望,旨在为促进光合发酵制氢研究提供有益借鉴。

Abstract

This article briefly describes the three mechanisms involved in photosynthetic bacterial hydrogen production: photosynthetic reactions, substrate metabolism, and hydrogen production by nitrogenase enzymes. It also summarizes and analyzes research results on additive regulation in photosynthetic hydrogen production, highlighting four main pathways of additive regulation: spectral, electronic, metabolic, and environmental. The article further discusses the effects, mechanisms, advantages, and limitations of two major categories of additives-metal and non-metal. Finally, it analyzes and forecasts the development trend and future research direction of additives for hydrogen production in photosynthetic fermentation, aiming to provide valuable insights for researchers in this field.

关键词

光合细菌 / 光合产氢 / 氢能 / 添加剂 / 调控途径

Key words

photosynthetic bacteria / photosynthetic hydrogen production / hydrogen energy / additives / regulatory pathways

引用本文

导出引用
陈冠益, 黄加亮, 穆兰, 党超, 武婉婷, 陶俊宇. 添加剂调控光合发酵制氢进展与展望[J]. 太阳能学报. 2025, 46(5): 1-14 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0043
Chen Guanyi, Huang Jialiang, Mu Lan, Dang Chao, Wu Wanting, Tao Junyu. PROGRESS AND PROSPECTS OF ADDITIVE-REGULATED PHOTOSYNTHETIC FERMENTATION FOR HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 1-14 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0043
中图分类号: TK6   

参考文献

[1] 张盛, 郑津洋, 戴剑锋, 等. 可再生能源大规模制氢及储氢系统研究进展[J]. 太阳能学报, 2024, 45(1): 457-465.
ZHANG S, ZHENG Y Y, DAI J F, et al.Research progress on renewable energy system coupled with large-scale hydrogen production and storage[J]. Acta energiae solaris sinica, 2024, 45(1): 457-465.
[2] 徐少奇, 陈文杰, 解林奇, 等. 我国有机废弃物资源总量及养分利用潜力[J]. 植物营养与肥料学报, 2022, 28(8): 1341-1352.
XU S Q, CHEN W J, XIE L Q, et al.Organic waste resources and nutrient utilization potential in China[J]. Journal of plant nutrition and fertilizers, 2022, 28(8): 1341-1352.
[3] XU X X, ZHOU Q, YU D H.The future of hydrogen energy: bio-hydrogen production technology[J]. International journal of hydrogen energy, 2022, 47(79): 33677-33698.
[4] ZHANG C, MA S S, WANG G H, et al.Enhancing continuous hydrogen production by photosynthetic bacterial biofilm formation within an alveolar panel photobioreactor[J]. International journal of hydrogen energy, 2019, 44(50): 27248-27258.
[5] MAZIERE C, BODO M, PERDRAU M A, et al.Climate change influences chlorophylls and bacteriochlorophylls metabolism in hypersaline microbial mat[J]. Science of the total environment, 2022, 802: 149787.
[6] SINGH T, ALHAZMI A, MOHAMMAD A, et al.Integrated biohydrogen production via lignocellulosic waste: opportunity, challenges & future prospects[J]. Bioresource technology, 2021, 338: 125511.
[7] ZHANG Q G, ZHU S G, ZHANG Z P, et al.Enhancement strategies for photo-fermentative biohydrogen production: a review[J]. Bioresour technology, 2021, 340: 125601.
[8] KIM M S, KIM D H, SON H N, et al.Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deleted-mutant from acetate and butyrate[J]. International journal of hydrogen energy, 2011, 36(21): 13964-13971.
[9] YANG C F, LEE C M.Enhancement of photohydrogen production using phbC deficient mutant Rhodopseudomonas palustris strain M23[J]. Bioresource technology, 2011, 102(9): 5418-5424.
[10] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies undercarbon neutralityvision[J]. Acta energiae solaris sinica, 2022, 43(6) :508-520.
[11] NADEEM F, ZHANG H, TAHIR N, et al.Advances in the catalyzed photo-fermentative biohydrogen production through photo nanocatalysts with the potential of selectivity, and customization[J]. Bioresource technology, 2023, 382: 129221.
[12] LI S G, TABATABAEI M, LI F H, et al.A review of green biohydrogen production using anoxygenic photosynthetic bacteria for hydrogen economy: challenges and opportunities[J]. International journal of hydrogen energy, 2022, 54: 218-238.
[13] GOVEAS L C, NAYAK S, KUMAR P S, et al.Recent advances in fermentative biohydrogen production[J]. International journal of hydrogen energy, 2024, 54: 200-217.
[14] TIANG M F, FITRI HANIPA M A, ABDUL P M, et al. Recent advanced biotechnological strategies to enhance photo-fermentative biohydrogen production by purple non-sulphur bacteria: an overview[J]. International journal of hydrogen energy, 2020, 45(24): 13211-13230.
[15] CAI J L, ZHAO Y X, FAN J B, et al.Photosynthetic bacteria improved hydrogen yield of combined dark- and photo-fermentation[J]. Journal of biotechnology, 2019, 302: 18-25.
[16] MOREIRA F S, RODRIGUES M S, SOUSA L M, et al.Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production[J]. Energy, 2022, 239: 122465.
[17] KANWAL F, TAHIR A, QADIR SHAH S A, et al. Effect of phyto-fabricated nanoscale organic-iron complex on photo-fermentative hydrogen production by Rhodopseudomonas palustris MP2 and Rhodopseudomonas palustris MP4[J]. Biomass and bioenergy, 2020, 140: 105667.
[18] WANG W K, HU Y H, LIAO G Z, et al.Hydrogen fermentation by photosynthetic bacteria mixed culture with silicone immobilization and metagenomic analysis[J]. International journal of hydrogen energy, 2022, 47(96): 40590-40602.
[19] ZHANG Y, CHENG J, HE Y T, et al.Photo-fermentative hydrogen production performance of a newly isolated Rubrivivax gelatinosus YP03 strain with acid tolerance[J]. International journal of hydrogen energy, 2022, 47(48): 20784-20792.
[20] CHEN Z, JIANG D P, ZHANG T, et al.Comparison of three ionic liquids pretreatment of Arundo donax L. For enhanced photo-fermentative hydrogen production[J]. Bioresour technology, 2022, 343: 126088.
[21] SHUI X N, JIANG D P, LI Y M, et al.Enhancement of static magnetic field on biological hydrogen production via photo-fermentation of giant reed[J]. Bioresour technology, 2023, 367: 128221.
[22] XIANG G N, ZHANG Q G, LI Y M, et al.Enhancement on photobiological hydrogen production from corn stalk via reducing hydrogen pressure in bioreactors by way of phased decompression schemes[J]. Bioresour technology, 2023, 385: 129377.
[23] ZHANG Z P, AI F, LI Y M, et al.Co-production process optimization and carbon footprint analysis of biohydrogen and biofertilizer from corncob by photo-fermentation[J]. Bioresour technology, 2023, 375: 128814.
[24] DAHBIA A A, AKROUM H, LOUNICI H.Green hydrogen production by Rhodobacter sphaeroides[J]. Energy sources, Part A: recovery, utilization, and environmental effects, 2019, 45(1): 2862-2880.
[25] JI H S, WAN L, GAO Y X, et al.Hydrogenase as the basis for green hydrogen production and utilization[J]. Journal of energy chemistry, 2023, 85: 348-362.
[26] XUAN J S, HE L L, WEN W, et al.Hydrogenase and nitrogenase: key catalysts in biohydrogen production[J]. Molecules, 2023, 28(3): 1392.
[27] SEEFELDT L C, HOFFMAN B M, DEAN D R.Mechanism of mo-dependent nitrogenase[J]. Annu rev biochem, 2009, 78: 701-722.
[28] YANG C H, HUANG K S, WANG Y T, et al.A review of bacteriochlorophyllides: chemical structures and applications[J]. Molecules, 2021, 26(5): 1293.
[29] MAGDAONG N C M, NIEDZWIEDZKI D M, GOODSON C, et al. Carotenoid-to-bacteriochlorophyll energy transfer in the LH1-RC core complex of a bacteriochlorophyll B containing purple photosynthetic bacterium blastochloris viridis[J]. The journal of physical chemistry B, 2016, 120(23): 5159-5171.
[30] NOGI Y, AKIBA T, HORIKOSHI K.Wavelength dependence of photoproduction of hydrogen by rhodopseudomonas rutila[J]. Agricultural and biological chemistry, 2014, 49(1): 35-38.
[31] 戚祥. 红外光强化不产氧光合细菌污染物转化探究[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2019.
QI W.The exploration of infrared-light improved pollutant transformation by anoxygenic photosynthetic bacteria[D]. Chongqing: University of Chinese Academy of Sciences(Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences), 2019.
[32] HUANG X M, LIN J J, LIANG J R, et al.Pyridinic nitrogen doped carbon dots supply electrons to improve photosynthesis and extracellular electron transfer of chlorella pyrenoidosa[J]. Small, 2023: e2206222.
[33] LI D N, LI W, ZHANG H R, et al.Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis[J]. ACS applied materrials interfaces, 2020, 12(18): 21009-21019.
[34] 郭成龙, 王永忠, 朱恂, 等. 底物传输对光纤束生物膜反应器产氢影响[J]. 工程热物理学报, 2012, 33(2): 270-272.
GUO C L, WANG Y Z, ZHU X, et al.Effect of substrate transport on hydrogen production by optical fiber bundle biofilm bioreactor[J]. Journal of engineering thermophysics, 2012, 33(2): 270-272.
[35] MADIGAN M T, JUNG D O.An overview of purple bacteria:systematics, physiology, and habitats.In: purple phototrophic bacteria[J]. Advances in photosynthesis and respiration, 2009, 28: 1-15.
[36] SAGIR E, ALIPOUR S.Photofermentative hydrogen production by immobilized photosynthetic bacteria: current perspectives and challenges[J]. Renewable and sustainable energy reviews, 2021, 141: 110796.
[37] NADEEM F, JIANG D P, TAHIR N, et al.Defect engineering in SnO2 nanomaterials: pathway to enhance the biohydrogen production from agricultural residue of corn stover[J]. Applied materials today, 2020, 21: 100850.
[38] LI X, SHI H, WANG Y H, et al.Effects of vitamins (nicotinic acid, vitamin B1 and biotin) on phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5[J]. International journal of hydrogen energy, 2011, 36(16): 9620-9625.
[39] MOHAMMEDAWI H H, ZNAD H.Impact of metal ions and EDTA on photofermentative hydrogen production by Rhodobacter sphaeroides using a mixture of pre-treated brewery and restaurant effluents[J]. Biomass and bioenergy, 2020, 134: 105482.
[40] LI Y M, ZHANG Z P, LEE D J, et al.Role of L-cysteine and iron oxide nanoparticle in affecting hydrogen yield potential and electronic distribution in biohydrogen production from dark fermentation effluents by photo-fermentation[J]. Journal of cleaner production, 2020, 276: 123193.
[41] YANG J B, JIANG D P, SHUI X N, et al.Effect of 5-HMF and furfural additives on bio-hydrogen production by photo-fermentation from giant reed[J]. Bioresour technology, 2022, 347: 126743.
[42] HAKOBYAN L, GABRIELYAN L, TRCHOUNIAN A.Bio-hydrogen production and the F0F1-ATPase activity of Rhodobacter sphaeroides: effects of various heavy metal ions[J]. International journal of hydrogen energy, 2012, 37(23): 17794-17800.
[43] WANG Z J, GAO D, ZHAN Y, et al.Enhancing the light coverage of photosynthetic bacteria to augment photosynthesis by conjugated polymer nanoparticles[J]. ACS Appl. Bio mater., 2020, 3(5): 3423-3429.
[44] HAKOBYAN L, GABRIELYAN L, TRCHOUNIAN A.Ni (II) and Mg (II) ions as factors enhancing biohydrogen production by Rhodobacter sphaeroides from mineral springs[J]. International journal of hydrogen energy, 2012, 37(9): 7482-7486.
[45] SILVA F T, MOREIRA L R, DE SOUZA FERREIRA J, et al. Replacement of sugars to hydrogen production by Rhodobacter capsulatus using dark fermentation effluent as substrate[J]. Bioresour technology, 2016, 200: 72-80.
[46] XIE G J, LIU B F, WEN H Q, et al.Bioflocculation of photo-fermentative bacteria induced by calcium ion for enhancing hydrogen production[J]. International journal of hydrogen energy, 2013, 38(19): 7780-7788.
[47] LI Y M, ZHANG Z P, JIANG D P, et al.Continuous dark and photo biohydrogen production in a baffled bioreactor and electrons distribution analysis[J]. Bioresour technology, 2021, 337: 125440.
[48] JIANG D P, ZHANG X T, JING Y Y, et al.Towards high light conversion efficiency from photo-fermentative hydrogen production of Arundo donax L. By light-dark duration alternation strategy[J]. Bioresour technology, 2022, 344(Pt B): 126302.
[49] ZHU S G, ZHANG Y, ZHANG Z P, et al.Ascorbic acid-mediated zero-valent iron enhanced hydrogen production potential of bean dregs and corn stover by photo fermentation[J]. Bioresour technology, 2023, 374: 128761.
[50] DING J, LIU B F, REN N Q, et al.Hydrogen production from glucose by co-culture of Clostridium Butyricum and immobilized Rhodopseudomonas faecalis RLD-53[J]. International journal of hydrogen energy, 2009, 34(9): 3647-3652.
[51] JIANG D P, GE X M, ZHANG T, et al.Photo-fermentative hydrogen production from enzymatic hydrolysate of corn stalk pith with a photosynthetic consortium[J]. International journal of hydrogen energy, 2016, 41(38): 16778-16785.
[52] ZHU S G, ZHANG Y, ZHANG Z P, et al.Effect of Fe0 particle size on buffering characteristics and biohydrogen production in high-load photo fermentation system of corn stover[J]. Bioresour technology, 2022, 364: 128086.
[53] 张全国, 刘会亮, 胡建军, 等. 磷酸盐和碳酸盐对秸秆类生物质光发酵产氢的影响[J]. 农业工程学报, 2017, 33(13): 251-257.
ZHANG Q G, LIU H L, HU J J, et al.Effects of phosphate and carbonate on photo-fermentative hydrogen production of biomass straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 251-257.
[54] 周楠, 荆艳艳, 夏晨曦, 等. 维生素B4对秸秆类生物质光发酵产氢的影响[J]. 热科学与技术, 2021, 20(5): 495-501.
ZHOU N, JING Y Y, XIA C X, et al.Effect of vitamin B4 on photo-fermentative hydrogen production of straw biomass[J]. Journal of thermal science and technology, 2021, 20(5): 495-501.
[55] LIU S Y, SHEN F H, NADEEM F, et al.Triggering photo fermentative biohydrogen production through NiFe2O4 photo nanocatalysts with various excitation sources[J]. Bioresource technology, 2023, 385: 129378.
[56] ZHANG Q G, LIU H, SHUI X N, et al.Research progress of additives in photobiological hydrogen production system to enhance biohydrogen[J]. Bioresour technology, 2022, 362: 127787.
[57] 尹敬群, 田君. 微生物吸附金属离子研究与发展[J]. 生物化工, 2016, 2(1): 65-68.
Yin J Q, TIAN J.Research and development on biosorption of metal ions[J]. Biological chemical engineering, 2016, 2(1): 65-68.
[58] ZHANG N Y, LU C Y, ZHANG Z P, et al.Enhancing photo-fermentative biohydrogen production using different zinc salt additives[J]. Bioresour technology, 2022, 345: 126561.
[59] ZHANG H, LI Y M, CHEN L, et al.Effect of zinc ion on photo-fermentative hydrogen production performance, kinetics and electronic distribution in biohydrogen production by HAU-M1[J]. Bioresource technology, 2021, 324: 124680.
[60] REZAEITAVABE F, SAADAT S, TALEBBEYDOKHTI N, et al.Enhancing bio-hydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials (exhausted resin and biochar)[J]. Biomass and bioenergy, 2020, 143: 105846.
[61] EROGLU E, GUNDUZ U, YUCEL M, et al.Effect of iron and molybdenum addition on photofermentative hydrogen production from olive mill wastewater[J]. International journal of hydrogen energy, 2011, 36(10): 5895-5903.
[62] ZHANG T, JIANG D P, LI Y M, et al.Study of the interrelationship between nano-TiO2 addition and photo fermentative bio-hydrogen production of corn straw[J].Bioresour technology, 2021, 338: 125549.
[63] LIU B F, JIN Y, WANG Z, et al.Enhanced photo fermentative hydrogen production of Rhodopseudomonas sp. nov. strain A7 by the addition of TiO2, ZnO and SiC nanoparticles[J]. International journal of hydrogen energy,2017, 42(29): 18279-18287.
[64] MASIHI F, REZAEITAVABE F, KARIMI-JASHNI A, et al.Optimization and enhancement of biohydrogen production in a single-stage hybrid (dark/photo) fermentation reactor using Fe3O4 and TiO2 nanoparticles[J]. International journal of hydrogen energy, 2023, 52: 295-305.
[65] ZHAO Y X, CHEN Y.Nano-TiO2 enhanced photofermentative hydrogen produced from the dark fermentation liquid of waste activated sludge[J]. Environmental science technology, 2011, 45(19): 8589-8595.
[66] 赵甲, 张全国, 张志萍, 等. Fe3O4纳米颗粒对玉米秸秆光发酵产氢的影响[J]. 太阳能学报, 2021, 42(6): 438-444.
ZHAO J, ZHANG Q G, ZHANG Z P, et al.Effect of Fe3O4 nanoparticles on phtot-fermentative bio-hydrogenproduction from corn straw[J]. Acta energiae solaris sinica, 2021, 42(6): 438-444.
[67] DOLLY S, PANDEY A, PANDEY B K, et al.Process parameter optimization and enhancement of photo-biohydrogen production by mixed culture of Rhodobacter sphaeroides NMBL-02 and Escherichia coli NMBL-04 using Fe-nanoparticle[J]. International journal of hydrogen Energy, 2015, 40(46): 16010-16020.
[68] 杜瑞成, 李燕, 王霆, 等. 纳米TiO2光催化剂改性研究进展[J]. 化学通报, 2023, 86(10): 1172-1180.
DU R C, LI Y, WANG T, et al.Research progress in the modification of nano-TiO2 photocatalysts[J]. Chemistry, 2023, 86(10): 1172-1180.
[69] 翁定悦, 姬儒雪, 阴羿辰, 等. 金属掺杂氧化锌的光催化研究进展[J]. 化学研究, 2023, 34(2): 153-164.
WENG D R, JI R X, YING Y C, et al.Research progress in phtocatalysis of metal-doped zinc oxide[J]. Chemical research, 2023, 34(2): 153-164.
[70] SLAVIN Y N, ASNIS J, HAFELI U O, et al.Metal nanoparticles: understanding the mechanisms behind antibacterial activity[J]. Journal nanobiotechnology, 2017, 15(1): 65.
[71] ZHU Y, WU J H, CHEN M, et al.Recent advances in the biotoxicity of metal oxide nanoparticles: impacts on plants, animals and microorganisms[J]. Chemosphere, 2019, 237: 124403.
[72] XIE G J, LIU B F, XING D F, et al.Photo-fermentative bacteria aggregation triggered by L-cysteine during hydrogen production[J]. Biotechnology for biofuels, 2013, 6(1): 64.
[73] WEN H Q, XING D F, XIE G J, et al.Enhanced photo-fermentative hydrogen production by synergistic effects of formed biofilm and added L-cysteine[J]. Renewable energy, 2019, 139: 643-650.
[74] 夏晨曦, 张全国, 张志萍, 等. 氨基酸对光合菌群HAU-M1发酵玉米秸秆产氢能力的影响[J]. 太阳能学报, 2021, 42(5): 488-493.
XIA C X, ZHANG Q G, ZHANG Z P, et al.Effect of amino acids on photo-fermenatative hydrogen production of biomass straw[J]. Acta energiae solaris sinica, 2021, 42(5): 488-493.
[75] 夏晨曦. 氨基酸类添加物对玉米秸秆光合生物制氢影响的实验研究[D]. 郑州: 河南农业大学, 2020.
XIA C X.Effect of amino acids on photosynthetic biohydrogen production from corn straw[D]. Zhengzhou Henan Agricultural university, 2020.
[76] REN H Y, LIU B F, DING J, et al.Enhanced photo-hydrogen production of Rhodopseudomonas faecalis RLD-53 by EDTA addition[J]. International journal of hydrogen energy, 2012, 37(10): 8277-8281.
[77] GUO S Y, LU C Y, WANG K X, et al.Effect of citrate buffer on hydrogen production by photosynthetic bacteria[J]. Bioresour technology, 2022, 347: 126636.
[78] LU C Y, TAHIR N, LI W Z, et al.Enhanced buffer capacity of fermentation broth and biohydrogen production from corn stalk with Na2HPO4/NaH2PO4[J]. Bioresource technology, 2020, 313: 123783.
[79] JIANG D P, ZHANG X, GE X, et al.Insights into correlation between hydrogen yield improvement and glycerol addition in photo-fermentation of Arundo donax L[J]. Bioresource technology, 2021, 321: 124467.
[80] WANG K X, LU C Y, ZHANG H, et al.Enhancement effect of defoamer additives on photo-fermentation biohydrogen production process[J]. Bioresource technology, 2022, 352: 127070.
[81] 刘爽. 维生素和氨基酸对多形汉逊酵母培养基的优化[D]. 大连: 大连理工大学, 2019.
LIU S.Optimization of media for Hansenula polymorpha by vitamins and amino acids[D]. Dalian: Dalian University of Technology, 2019.
[82] VERDIN E.NAD+ in aging, metabolism, and neurodegeneration[J]. Science, 2015, 350(6265): 1208-1213.
[83] 王佳, 吴李瑞, 史玉龙, 等. 烟酸合成及应用研究进展[J]. 安徽化工, 2019, 45(3): 13-15.
WANG J, WU L R, SHI Y L, et al.Progress in synthesis and application of niacin[J]. Anhui chemical industry, 2019, 45(3): 13-15.
[84] 孙明星. 光合细菌Rhodopseudomonas Palustris PB-Z产氢性能的研究[D]. 太原: 太原理工大学, 2016.
SUN M X.The Study on Hydrogen Production Performance of Rhodopseudomonas Palustris PB-Z[D]. Taiyuan: Taiyuan University of Technology, 2016.
[85] 李旭. 光合细菌(Rhodobacter sphaeroides)生物制氢及其光生物反应器研究[D]. 上海: 华东理工大学, 2011.
LI X.Phototrophic hydrogen by Rhodobacter sphaeroides and the design of photobioreactors[D]. Shanghai: East China University of Science and Technology, 2011.
[86] 邓威森, 肖国强, 袁俊, 等. L-半胱氨酸光学传感器研究与应用[J]. 化学传感器, 2022, 42(4): 9-22.
DENG W S, XIAO G Q, YUAN J, et al.Research and application on developing colorimetric and fluorescent sensors for L-cysteine[J]. Chemical sensors, 2022, 42(4): 9-22.
[87] 李南楠, 彭思雨, 闫海, 等. 沼泽红假单胞菌产类胡萝卜素及抗氧化性[J]. 化工进展, 2023, 42(11): 5891-5899.
LI N N, PENG S Y, YAN H, et al.Production and antioxidant activities of carotenoids from Rhodopseudomonas palustris[J]. Chemical industry and engineering progress, 2023, 42(11): 5891-5899.

基金

国家自然科学基金(52200169)

PDF(2498 KB)

Accesses

Citation

Detail

段落导航
相关文章

/