为提高复合抛物面集热器(CPC)太阳能利用率,基于光线追迹原理,建立无真空、玻璃盖板式及真空管式CPC的光线追迹模型,研究3种结构下CPC的光学性能。计算结果显示,接收器外加玻璃套管后产生临界折射角,部分光线经过玻璃套管折射后无法被接收器拦截,造成额外光学损失。随着玻璃套管外径增大,可被接收器拦截的光线数量减少,集热器光学效率降低。改变光线入射角会影响接收器周向能流密度分布。光线入射角为20°时,临界折射角对集热器光学性能影响最小,玻璃盖板式与真空管式CPC光学效率分别为68.5%、65.5%。
Abstract
To improve the solar energy utilization efficiency of compound parabolic concentrators(CPC), optical models were established for three CPC structures: non-evacuated, glass-covered, and evacuated-tubular based on the principles of ray tracing. The optical performance of CPC under these three structures was systematically investigated. The results reveal that, after a glass sleeve was added outside the receiver, some rays with angles exceeding the critical refraction angle could not be intercepted by the receiver due to refraction by the glass sleeve, resulting in additional optical losses. As the outer diameter of the glass sleeve increases, the number of rays interceptable by the receiver gradually decreases, leading to a progressive decline in the optical efficiency of the CPC. The incident angle of ray affects the circumferential heat flux distribution of the receiver. As the incident angle of ray is 20°, the influence of the critical refraction angle on the optical performance of the CPC is minimized, with the optical efficiencies of the glass-covered and evacuated-tubular CPCs being 68.5% and 65.5%, respectively.
关键词
太阳能 /
光线追踪 /
能流密度 /
复合抛物面集热器 /
光学效率
Key words
solar energy /
ray tracing /
heat flux /
compound parabolic collector /
optical efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SONG Z Y, JI J, CAI J Y, et al.Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator[J]. Applied energy, 2021, 299: 117279.
[2] XIAO L Y, ZHENG C Y, SHI K, et al.Model construction and performance research of the optimized compound parabolic concentrator based on critical truncation and multi-section congruent[J]. Renewable energy, 2023, 217: 119201.
[3] LU B C, LIU T X, YAN X Y, et al.A new solar mid-and-low temperature receiver/reactor with linear Fresnel reflector[J]. Applied thermal engineering, 2023, 226: 120216.
[4] RIAZ H, ALI M, AKHTER J, et al.Numerical and experimental investigations of an involute shaped solar compound parabolic collector with variable concentration ratio[J]. Renewable energy, 2023, 216: 119025.
[5] 常泽辉, 杭小蓉, 刘雪东, 等. 槽式复合多曲面聚光集热器光热性能研究[J]. 太阳能学报, 2023, 44(7): 221-228.
CHANG Z H, HANG X R, LIU X D, et al.Study on photothermal performance of trough compound parabolic concentrator[J]. Acta energiae solaris sinica, 2023, 44(7): 221-228.
[6] 吴德众, 李明, 李国良, 等. 低截取比下复合抛物面聚光器的光热性能[J]. 激光与光电子学进展, 2019, 56(8): 201-208.
WU D Z, LI M, LI G L, et al.Photothermal properties of compound parabolic concentrator under low interception ratio[J]. Laser & optoelectronics progress, 2019, 56(8): 201-208.
[7] WIDYOLAR B, JIANG L, FERRY J, et al.Non-tracking east-west XCPC solar thermal collector for 200 Celsius applications[J]. Applied energy, 2018, 216: 521-533.
[8] ELBRASHY A, BOUTERA Y, ABDEL-AZIZ M M, et al. A review on air heating applications with evacuated tubes: a focus on series and parallel tube configurations[J]. Solar energy, 2023, 264: 111996.
[9] YANG X X, LIN Q, SINGH P, et al.Evaluating the proficiency of a novel solar evacuated tube collector[J]. Applied thermal engineering, 2023, 226: 120311.
[10] BELLOS E, KORRES D N, TZIVANIDIS C.Investigation of a compound parabolic collector with a flat glazing[J]. Sustainability, 2023, 15(5): 4347.
[11] 黄宁宁, 王军, 姜牧笛, 等. CPC式集热器放置倾斜角的选择方法[J]. 太阳能学报, 2019, 40(9): 2530-2535.
HUANG N N, WANG J, JIANG M D, et al.Research on selection method of tilt angle for CPC-collector[J]. Acta energiae solaris sinica, 2019, 40(9): 2530-2535.
[12] YADAV M K, KEDARE S B, MODI A.Experimental investigation of a compound parabolic concentrator with aerogel and polycarbonate cover[J]. Applied thermal engineering, 2024, 236: 121585.
[13] 张维蔚, 王甲斌, 田瑞, 等. 热管式真空管太阳能聚光集热系统传热特性分析[J]. 农业工程学报, 2018, 34(3): 202-209.
ZHANG W W, WANG J B, TIAN R, et al.Analysis of heat transfer characteristics for parabolic trough solar collector system with heat-pipe evacuated tube[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 202-209.
[14] 刘鉴民. 太阳能利用原理·技术·工程[M]. 北京: 电子工业出版社, 2010: 52-56.
LIU J M.Principle, technology and engineering of solar energy utilization[M]. Beijing: Publishing House of Electronics Industry, 2010: 52-56.
[15] YILMAZ S, RIZA OZCALIK H, DOGMUS O, et al.Design of two axes sun tracking controller with analytically solar radiation calculations[J]. Renewable and sustainable energy reviews, 2015, 43: 997-1005.
[16] GRENA R.Optical simulation of a parabolic solar trough collector[J]. International journal of sustainable energy, 2010, 29(1): 19-36.
[17] MUHAMMAD A N B, YEONG W C, CHONG Z L, et al. Monitoring the coefficient of variation using a variable sample size EWMA chart[J]. Computers & industrial engineering, 2018, 126: 378-398.
[18] USTAOGLU A, ALPTEKIN M, OKAJIMA J, et al.Evaluation of uniformity of solar illumination on the receiver of compound parabolic concentrator (CPC)[J]. Solar energy, 2016, 132: 150-164.
[19] XU D H, QU M, YANG Z Y.A hybrid ray-tracing optical model for compound parabolic concentrators[J]. Journal of solar energy engineering, 2020, 142(6): 061008.
[20] 张维蔚, 段林作, 袁东辉, 等. 不同加热方式下热管接收器传热性能研究[J]. 太阳能学报, 2023, 44(4): 492-498.
ZHANG W W, DUAN L Z, YUAN D H, et al.Study on heat transfer performance of heat pipe receiver based on different heating modes[J]. Acta energiae solaris sinica, 2023, 44(4): 492-498.
基金
国家自然科学基金(51966011); 内蒙古科技重大专项(2021ZD0030); 自治区直属高校基本科研业务费项目(JY20220309)