由基于虚拟同步发电机(VSG)控制策略的双馈发电机(DFIG-VSG)组成的风电场在响应电网功率指令值(Pgrid)变化时,会加剧风电场内各台DFIG-VSG的主轴疲劳载荷。风电场中央控制器通过合理地将Pgrid分配至各台DFIG-VSG,可使得风电场在响应Pgrid变化的同时,降低场内各台DFIG-VSG的Ms疲劳载荷。为此,提出了一种计及主轴疲劳载荷的风电场有功功率分配方法。首先,构建可量化表示场内单台DFIG-VSG的有功功率指令值与其主轴力矩(Ms_T)之间关系的离散化方程。然后,基于该离散化方程,在中央控制器中以各台DFIG-VSG的Ms_T波动总和最小作为目标函数,并根据Pgrid以及各台DFIG-VSG的运行状态设定有功功率约束条件。最后,基于中央控制器中的fmincon算法实时分配各台DFIG-VSG所需的有功功率指令值。仿真结果验证了所提出的分配方法的有效性及优越性。
Abstract
The wind farm composed of doubly fed induction generator (DFIG-VSG) based on virtual synchronous generator control strategy (VSG) will exacerbate the main shaft (Ms) fatigue load of each DFIG-VSG in the wind farm when responding to changes in the grid power command value (Pgrid). The central controller of the wind farm can reasonably allocate Pgrid to each DFIG-VSG in, which can reduce the Ms fatigue load of each DFIG-VSG in the wind farm while responding to Pgrid changes. A wind farm active power allocation method that takes into account main shaft fatigue load is proposed for this purpose. Firstly, construct a discretized equation that quantifies the relationship between the active power command value of a single DFIG-VSG in the field and its main shaft torque (Ms_T). Then, based on this discretization equation, the Ms of each DFIG-VSG minimized as the objective function and active power constraints are based on the operating status of Pgrid and each DFIG-VSG. Finally, based on the fmincon function in the central controller, real-time allocation of active power command values required by each DFIG-VSG is performed. The simulation results have verified the effectiveness and superiority of the proposed allocation method.
关键词
风电场 /
虚拟同步发电机 /
主轴疲劳载荷 /
有功功率分配方法
Key words
wind farm /
virtual synchronous generator /
main shaft fatigue load /
active power allocation method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 蒋东荣, 莫若男, 杨超, 等. 虚拟同步控制下双馈风电机组传动链动态特性分析[J]. 太阳能学报, 2023, 44(8): 412-419.
JIANG D R, MO R N, YANG C, et al.Dynamic characteristics analysis of drive train of doubly-fed wind turbines under virtual synchronous control[J]. Acta energiae solaris sinica, 2023, 44(8): 412-419.
[2] 徐思莹, 王晗, 曹云峰, 等. 稳定边界及多目标约束下自同步电压源双馈风电机组参数整定[J]. 电力系统自动化, 2023, 47(11): 18-28.
XU S Y, WANG H, CAO Y F, et al.Parameter tuning for self-synchronous voltage source doubly-fed wind turbines with stability boundary and multi-objective constraint[J]. Automation of electric power systems, 2023, 47(11): 18-28.
[3] 应有, 孙勇, 杨靖, 等. 大型双馈风电机组电网故障穿越过程载荷特性分析[J]. 电力系统自动化, 2020, 44(12): 131-138.
YING Y, SUN Y, YANG J, et al.Load characteristic analysis of grid fault ride-through process for DFIG based large wind turbine[J]. Automation of electric power systems, 2020, 44(12): 131-138.
[4] 杨伟峰. 风电和储能参与的层次协调频率控制方法研究[D]. 长沙: 湖南大学, 2022.
YANG W F.Research on hierarchical coordinated frequency control method involving wind power and energy storage[D]. Changsha: Hunan University, 2022.
[5] ZHAO H R, WU Q W, GUO Q L, et al.Distributed model predictive control of a wind farm for optimal active power Control PartII: implementation with clustering-based piece-wise affine wind turbine model[J]. IEEE transactions on sustainable energy, 2015, 6(3): 840-849.
[6] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039.
YAN X W, CUI S, CHANG W F.Primary frequency regulation control strategy of doubly-fed induction generator considering supercapacitor SOC feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039.
[7] WANG X D, WANG Y W, LIU Y M.Dynamic load frequency control for high-penetration wind power considering wind turbine fatigue load[J]. International journal of electrical power & energy systems, 2020, 117: 105696.
[8] LIU Y M, WANG Y W, WANG X D, et al.Optimal active power dispatch for wind farm based on the improved fatigue load sensitivity[J]. 2019, 11(3): 033306.
[9] 李智, 张扬帆, 刘明波, 等. 电压控制型虚拟同步发电机控制特性评估与多机稳定性分析[J]. 太阳能学报, 2023, 44(10): 1-8.
LI Z, ZHANG Y F, LIU M B, et al.Control characteristics evaluation and multiple generator stability analysis of voltage controlled virtual synchronous generators[J]. Acta energiae solaris sinica, 2023, 44(10): 1-8.
[10] 孟浩. 双馈风力发电系统的虚拟同步发电机控制策略研究[D]. 合肥: 合肥工业大学, 2018.
MENG H.Research on control strategy of virtual synchronous generator for doubly-fed wind power generation system[D]. Hefei: Hefei University of Technology, 2018.
[11] 谢震, 孟浩, 张兴, 等. 基于定子虚拟阻抗的双馈风电机组虚拟同步控制策略[J]. 电力系统自动化, 2018, 42(9): 157-163, 187.
XIE Z, MENG H, ZHANG X, et al.Virtual synchronous control strategy of DFIG-based wind turbines based on stator virtual impedance[J]. Automation of electric power systems, 2018, 42(9): 157-163, 187.
[12] 戚军, 李袁超, 童辉, 等. 基于动态虚拟电流前馈的预同步VSG功率二阶解耦策略[J]. 电网技术, 2020, 44(9): 3556-3565.
QI J, LI Y C, TONG H, et al.Second-order power decoupling control in pre-synchronized VSG based on dynamic virtual current feedforward control[J]. Power system technology, 2020, 44(9): 3556-3565.
[13] 凌禹. 双馈风力发电系统的建模、仿真与控制[M]. 北京: 机械工业出版社, 2017.
LING Y.Modeling, simulation and control of doubly-fed wind power generation system[M]. Beijing: China Machine Press, 2017.
[14] 杨伟峰, 文云峰, 李立, 等. 考虑疲劳载荷的风电场分散式频率响应策略[J]. 电力自动化设备, 2022, 42(4): 55-62.
YANG W F, WEN Y F, LI L, et al.Decentralized frequency response strategy for wind farm considering fatigue load[J]. Electric power automation equipment, 2022, 42(4): 55-62.
[15] WANG Y W, GUO Y F, ZHANG D R, et al.Analysis and mitigation of the drive train fatigue load for wind turbine with inertial control[J]. International journal of electrical power & energy systems, 2022, 136: 107698.
[16] FAN X K, CRISOSTOMI E, THOMOPULOS D, et al.An optimized decentralized power sharing strategy for wind farm de-loading[J]. IEEE transactions on power systems, 2021, 36(1): 136-146.
[17] NERY G A Jr, MARTINS M A F, KALID R. A PSO-based optimal tuning strategy for constrained multivariable predictive controllers with model uncertainty[J]. ISA transactions, 2014, 53(2): 560-567.
[18] 巩敦卫, 季新芳. 融入偏好的区间高维多目标集合进化优化方法[J]. 控制理论与应用, 2013,30(11): 1369-1383.
GONG G W, JI X F.Optimizing interval higher-dimensional multi-objective problems using set-based evolutionary algorithms incorporated with preferences[J]. Control theory & applications, 2013, 30(11): 1369-1383.
[19] WANG H B, LIU Y M, WANG X D, et al.Dynamic synthetic inertial control method of wind turbines considering fatigue load[J]. Frontiers in energy research, 2023, 10: 1067896.
[20] 胡寿松. 自动控制原理[M]. 7版. 北京: 科学出版社, 2019.
HU S S.Principle of automatic control[M]. 7th ed. Beijing: Science Press, 2019.
基金
揭榜挂帅科技攻关专项(2021020545-JH1/104)