风沙环境下风力机错列排布对沙尘输运的影响

李德顺, 郭晟艺, 马高生, 王清

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 474-484.

PDF(6701 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6701 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 474-484. DOI: 10.19912/j.0254-0096.tynxb.2024-0065

风沙环境下风力机错列排布对沙尘输运的影响

  • 李德顺1,2, 郭晟艺1, 马高生1,2, 王清1,2
作者信息 +

STUDY ON INFLUENCE OF STAGGERED ARRANGEMENT OF WIND TURBINES ON SAND AND DUST TRANSPORT IN WIND-BLOWN SAND ENVIRONMENT

  • Li Deshun1,2, Guo Shengyi1, Ma Gaosheng1,2, Wang Qing1,2
Author information +
文章历史 +

摘要

为探究风力机尾流对沙尘输运的影响,采用大涡模拟结合致动线方法研究风力机叶片以及多相质点网格模型处理沙尘颗粒。以两台水平轴风力机模型为研究对象,分析风沙环境下4种不同排布风力机的尾流状态,以及两台风力机轮毂中心处y方向距离对沙尘颗粒时空分布特性的影响。结果表明,两台风力机的串列排布会对下游风力机造成严重的速度亏损,错列排布的下游风力机的速度亏损,会随着y轴间距减增大而减小。风力机不同排布对沙尘输运的影响不同,在两台风力机轮毂中心处y轴方向距离在(0~1)D(D为风力机直径)范围内的错列排布下,阻沙效果会随着y轴方向间距增大而变强。而当y轴间距减少时,促沉降效果更好。

Abstract

The desert areas in northwest China are rich in wind resources, and the development of wind power has been affected by sandstorms, so the relationship between the sand and dust environment and the operation of wind turbines has attracted great attention. In order to explore the influence of wind turbine wake on sand and dust transport, the large eddy simulation combined with the actuatior line method was used to study the processing of sand and dust particles by wind turbine blades and a multiphase particle grid model. Taking two horizontally axis wind turbine models as the research object, the wake states of four wind turbines with different arrangements in the wind-sand environment and the influence of the distance in the Y direction at the center of the hub of the two wind turbines on the temporal and spatial distribution characteristics of sand and dust particles were analyzed. The results show that the tandem arrangement of the two wind turbines causes a serious velocity loss to the downstream wind turbines, and the velocity loss of the downstream wind turbines with the staggered arrangement decreases with the increase of the y-axis spacing. Different arrangements of wind turbines have different effects on sand and dust transport. Under the staggerad arrangement of the two wind turbine, the sand blocking effect becomes stronger as the Y-axis spacing increases within (0-1)D. range When the Y-axis spacing is reduced, the sedimentation promotion effect is better.

关键词

风力机 / 风沙环境 / 沙尘输运 / 致动线 / 干沉降 / 防风阻沙

Key words

wind turbines / wind-blown sand environment / sand and dust transport / actuator line / dry sedimentation / wind-sand control

引用本文

导出引用
李德顺, 郭晟艺, 马高生, 王清. 风沙环境下风力机错列排布对沙尘输运的影响[J]. 太阳能学报. 2025, 46(5): 474-484 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0065
Li Deshun, Guo Shengyi, Ma Gaosheng, Wang Qing. STUDY ON INFLUENCE OF STAGGERED ARRANGEMENT OF WIND TURBINES ON SAND AND DUST TRANSPORT IN WIND-BLOWN SAND ENVIRONMENT[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 474-484 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0065
中图分类号: TK81   

参考文献

[1] REVEL D.BP Statistical review of world energy 2014[R]. London, England: British Petroleum Company, 2014.
[2] 卢正帅, 林红阳, 易杨. 风电发展现状与趋势[J]. 中国科技信息, 2017(2): 91-92.
LU Z S, LIN H Y, YI Y.Current status and trends of wind power development[J]. China science and technology information, 2017(2): 91-92.
[3] 郭晓斌. 西北已成为全国风电光伏装机最大区域[J]. 现代企业, 2016, (1): 41-41.
GUO X B.Northwest China has become the largest area in the country with installed wind power and photovoltaic capacity[J]. Modern enterprise, 2016, (1): 41-41.
[4] 钱正安, 宋敏红, 李万元. 近50年来中国北方沙尘暴的分布及变化趋势分析[J]. 中国沙漠, 2002, 22(2): 106-111.
QIAN Z A, SONG M H, LI W Y.Analyses on distributive variation and forecast of sand-dust storms in recent 50 years in North China[J]. Journal of desert research, 2002, 22(2): 106-111.
[5] 周文平, 杨茂立, 马桂兰. 水滴高速撞击风力机叶片的SPH-FEM耦合计算[J]. 太阳能学报, 2023, 44(11): 303-309.
ZHOU W P, YANG M L, MA G L.SPH-FEM coupling calculation of water droplets impact on wind turbine blades at high velocity[J]. Acta energiae solaris sinica, 2023, 44(11): 303-309.
[6] SMITH C M, BARTHELMIE R J, PRYOR S C.In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles[J]. Environmental research letters, 2013, 8(3) : 034006.
[7] FITCH A C.Climate impacts of large-scale wind farms as parameterized in a global climate model[J]. Journal of climate, 2015, 28(15): 6160-6180.
[8] 金秋霞, 彭鹏, 孙萍玲, 等. 考虑噪声影响的风电场功率分配优化模型[J]. 太阳能学报, 2023, 44(4): 115-124.
JIN Q X, PENG P, SUN P L, et al.Optimization model of power distribution of wind farms considering noise impact[J]. Acta energiae solaris sinica, 2023, 44(4): 115-124.
[9] RAJEWSKI D A, TAKLE E S, VANLOOCKE A, et al. Observations show that wind farms substantially modify the atmospheric boundary layer thermal stratification transition in the early evening[J]. Geophysical research letters, 2020, 47(6) : e2019GL086010.
[10] MO J Y, HUANG T, ZHANG X, et al.Spatiotemporal distribution of nitrogen dioxide within and around a large-scale wind farm: a numerical case study[J]. Atmospheric chemistry and physics, 2017, 17(23): 14239-14252.
[11] WANG Q, LUO K, WU C, et al.Impact of substantial wind farms on the local and regional atmospheric boundary layer: case study of Zhangbei wind power base in China[J]. Energy, 2019, 183: 1136-1149.
[12] 李德顺, 林伟杰, 马高生, 等. 风力机运行对稀相颗粒输运特性的影响[J]. 农业工程学报, 2022, 38(4): 92-98.
LI D S, LIN W J, MA G S, et al.Influence of wind turbine operation on the transport characteristics of dilute phase particles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(4): 92-98.
[13] 马高生, 霍春玉, 李德顺, 等. 风力机尾流影响沙尘输运的实验研究[J]. 太阳能学报, 2023, 44(10): 444-450.
MA G S, HUO C Y, LI D S, et al.Experimental study on influence of wind turbine wake on sand-dust transport[J]. Acta energiae solaris sinica, 2023, 44(10): 444-450.
[14] MA G S, HAN H, LI Y, et al.Numerical and experimental study of the effects of wind turbine operation on sand-dust transport characteristics[J]. Science China physics, mechanics & astronomy, 2024, 67(4): 244711.
[15] 王贵全. 惯性颗粒和壁湍流的相互作用: 湍流调制及颗粒分布[J]. 空气动力学学报, 2021, 39(3): 182-191.
WANG G Q.Interactions between inertial particles and wall-bounded turbulence: turbulence modulation and particle distribution[J]. Acta aerodynamica sinica, 2021, 39(3): 182-191.
[16] COSTA P, BRANDT L, PICANO F.Near-wall turbulence modulation by small inertial particles[J]. Journal of fluid mechanics, 2021, 922: A9.
[17] OKA S, GOTO S.Generalized sweep-stick mechanism of inertial-particle clustering in turbulence[J]. Physical review fluids, 2021, 6(4): 044605.
[18] WEAVER D S, MIŠKOVIĆ S. An analysis of CFD-DEM with coarse graining for turbulent particle-laden jet flows[J]. Fluids, 2023, 8(7): 215.
[19] CAPONE A, MOSCATO G, ROMANO G.Role of density ratio on particle dispersion in a turbulent jet[J]. Physics of fluids, 2023, 35(1): 013332.
[20] TRAVIS K N, SMITH S E, VIGNAL L, et al.Characterization of coupling between inertial particles and turbulent wakes from porous disk generators[J]. Journal of fluid mechanics, 2022, 933: A42.
[21] SØRENSEN J N, SHEN W Z. Numerical modeling of wind turbine wakes[J]. Journal of fluids engineering, 2002, 124(2) : 393-399.
[22] 艾勇, 程萍, 万德成. 基于致动线模型的错列式两风机尾流场数值模拟[J]. 海洋工程, 2018, 36(1): 27-36.
AI Y, CHENG P, WAN D C.Numerical simulation of wake interaction between two offset-line model wind turbines based on actuator line model[J]. The ocean engineering, 2018, 36(1): 27-36.
[23] MARTINEZ L, LEONARDI S, CHURCHFIELD M, et al. A comparison of actuator disk and actuator line wind turbine models and best practices for their use[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Nashville, Tennessee, 2012: AIAA2012-900.
[24] 朱翀, 王同光, 钟伟. 基于致动线方法的风力机气动数值模拟[J]. 空气动力学学报, 2014, 32(1): 85-91.
ZHU C, WANG T G, ZHONG W.Numerical analysis of wind turbine aerodynamic performance based on actuator line method[J]. Acta aerodynamica sinica, 2014, 32(1): 85-91.

基金

国家重点研发计划(2022YFB4202102; 2022YFB4202104); 中国工程院战略研究与咨询项目(2023-DFZD-04); 国家自然科学基金(51766009); 甘肃省基础研究创新群体项目(21JR7RA277)

PDF(6701 KB)

Accesses

Citation

Detail

段落导航
相关文章

/