粗糙表面非极性辐射器近场热光伏系统性能

李松, 赵军明, 刘林华

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 293-301.

PDF(4830 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4830 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 293-301. DOI: 10.19912/j.0254-0096.tynxb.2024-0073

粗糙表面非极性辐射器近场热光伏系统性能

  • 李松1, 赵军明1,2, 刘林华3
作者信息 +

PERFORMANCE OF NEAR-FIELD THERMOPHOTOVOLTAIC SYSTEM WITH ROUGH SURFACE NON-POLARIZED EMITTER

  • Li Song1, Zhao Junming1,2, Liu Linhua3
Author information +
文章历史 +

摘要

研究粗糙表面效应对由非极性辐射器石墨以及砷化铟(InAs)电池构成的近场热光伏系统性能的影响,分析其中的系统性能与辐射换热过程、光电转换过程的量化关系。针对辐射换热过程,利用等效多层近似法以及涨落电动力学求得不同粗糙度下的辐射换热量。对于光电转换过程,使用解析近似法获得系统的功率密度及效率。分析表明,一定的表面粗糙度可提升系统的性能,在50~200 nm的平均距离下,5 nm以内的粗糙度最多能提升10.7%的功率密度以及1.5%的效率。

Abstract

Roughness is inevitable in the manufacturing of thermophotovoltaic (TPV) systems. In near-field TPV system, the near-field radiative heat transfer (NFRHT) between the emitter and photovoltaic (PV) cell is primarily governed by surface waves, which are closely associated with the shallow surface region and highly susceptible to the influence of rough surfaces. This work investigates the impact of rough surfaces on the performance of near-field TPV systems composed of a non-polarized emitter (graphite) and indium arsenide (InAs) cell. The quantitative relationship between system performance and NFRHT, as well as the photoelectric conversion, is analyzed. For the radiative heat transfer, the equivalent multilayer approximation method and fluctuation electrodynamics are emploved to analyze NFRHT under varying roughness. For the photoelectric conversion, an analytical approximation method is employed to obtain the power density and efficiency. The result reveals that a certain level of surface roughness improves system performance. For an average distance of 50~200 nm, surface roughness within 5 nm can increase the power density by up to 10.7% and efficiency by 1.5%. This study deepens the understanding of the effect of rough surface on near field TPV system.

关键词

近场辐射换热 / 粗糙表面 / 近场热光伏 / 有效介质理论

Key words

near-field radiative heat transfer / rough surface / near-field thermophotovoltaic / effective medium theory

引用本文

导出引用
李松, 赵军明, 刘林华. 粗糙表面非极性辐射器近场热光伏系统性能[J]. 太阳能学报. 2025, 46(5): 293-301 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0073
Li Song, Zhao Junming, Liu Linhua. PERFORMANCE OF NEAR-FIELD THERMOPHOTOVOLTAIC SYSTEM WITH ROUGH SURFACE NON-POLARIZED EMITTER[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 293-301 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0073
中图分类号: TM615   

参考文献

[1] 吕喜风, 白金刚, 时春辉, 等. 乳液聚合法制备石蜡基相变储能材料及热物性研究[J]. 太阳能学报, 2022, 43(11): 392-398.
LYU X F, BAI J G, SHI C H, et al.Preparation and thermophysical properties of paraffin-based phase change energy storage materials by emulsion polymerization[J]. Acta energiae solaris sinica, 2022, 43(11): 392-398.
[2] 于静梅, 刘耀鸿, 张凤忠, 等. 翅片强化相变储能蓄热性能的数值研究[J]. 太阳能学报, 2023, 44(6): 78-83.
YU J M, LIU Y H, ZHANG F Z, et al.Numerical study of heat storage performance in phase change energy storage enhanced by fins[J]. Acta energiae solaris sinica, 2023, 44(6): 78-83.
[3] DATAS A, MARTÍ A.Thermophotovoltaic energy in space applications: review and future potential[J]. Solar energy materials and solar cells, 2017, 161: 285-296.
[4] HAMID ELSHEIKH M, SHNAWAH D A, SABRI M F M, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance[J]. Renewable and sustainable energy reviews, 2014, 30: 337-355.
[5] MITTAPALLY R, MAJUMDER A, REDDY P, et al.Near-field thermophotovoltaic energy conversion: progress and opportunities[J]. Physical review applied, 2023, 19(3): 037002.
[6] HARGREAVES C M.Anomalous radiative transfer between closely-spaced bodies[J]. Physics letters A, 1969, 30(9): 491-492.
[7] GHASHAMI M, GENG H Y, KIM T, et al.Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients[J]. Physical review letters, 2018, 120(17): 175901.
[8] ROUSSEAU E, SIRIA A, JOURDAN G, et al.Radiative heat transfer at the nanoscale[J]. Nature photonics, 2009, 3: 514-517.
[9] SHEN S, NARAYANASWAMY A, CHEN G.Surface phonon polaritons mediated energy transfer between nanoscale gaps[J]. Nano letters, 2009, 9(8): 2909-2913.
[10] DIMATTEO R.Micron-gap ThermoPhotoVoltaics (MTPV)[C]//AIP Conference Proceedings. Freiburg, Germany, 2004.
[11] DIMATTEO R S, GREIFF P, FINBERG S L, et al.Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap[J]. Applied physics letters, 2001, 79(12): 1894-1896.
[12] LU L, ZHANG B, OU H, et al.Enhanced near-field radiative heat transfer between graphene/hBN systems[J]. Small, 2022, 18(19): e2108032.
[13] SHI K Z, CHEN Z Y, XING Y X, et al.Near-field radiative heat transfer modulation with an ultrahigh dynamic range through mode mismatching[J]. Nano letters, 2022, 22(19): 7753-7760.
[14] SHI K Z, CHEN Z Y, XU X N, et al.Optimized colossal near-field thermal radiation enabled by manipulating coupled plasmon polariton geometry[J]. Advanced materials, 2021, 33(52): e2106097.
[15] BHATT G R, ZHAO B, ROBERTS S, et al.Integrated near-field thermo-photovoltaics for heat recycling[J]. Nature communications, 2020, 11: 2545.
[16] INOUE T, IKEDA K, SONG B, et al.Integrated near-field thermophotovoltaic device overcoming blackbody limit[J]. ACS photonics, 2021, 8(8): 2466-2472.
[17] FIORINO A, ZHU L X, THOMPSON D, et al.Nanogap near-field thermophotovoltaics[J]. Nature nanotechnology, 2018, 13(9): 806-811.
[18] LUCCHESI C, CAKIROGLU D, PEREZ J P, et al.Near-field thermophotovoltaic conversion with high electrical power density and cell efficiency above 14[J]. Nano letters, 2021, 21(11): 4524-4529.
[19] MITTAPALLY R, LEE B, ZHU L X, et al.Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density[J]. Nature communications, 2021, 12(1): 4364.
[20] LI S, XU D Y, ZHAO J M, et al.Random rough surface effects on the performance of near-field thermophotovoltaic system[J]. International journal of heat and mass transfer, 2023, 202: 123713.
[21] SONG J, JANG J, LIM M, et al.Thermophotovoltaic energy conversion in far-to-near-field transition regime[J]. ACS photonics, 2022, 9(5): 1748-1756.
[22] THORSOS E I.The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. Acoustical society of America journal, 1988, 83(1): 78-92.
[23] XU D Y, BILAL A, ZHAO J M, et al.Near-field radiative heat transfer between rough surfaces modeled using effective media with gradient distribution of dielectric function[J]. International journal of heat and mass transfer, 2019, 142: 118432.
[24] BIEHS S A, GREFFET J J.Influence of roughness on near-field heat transfer between two plates[J]. Physical review B, 2010, 82(24): 245410.
[25] ZHANG Z M.Nano/microscale heat transfer[M]. 2nd edition. Cham: Springer, 2020.
[26] PALIK E D A L. Handbook of optical constants of solids[M]. San Diego: Academic Press, 1998.
[27] JOULAIN K, MULET J P, MARQUIER F, et al.Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field[J]. Surface science reports, 2005, 57(3/4): 59-112.
[28] RYTOV S M.Correlation theory of thermal fluctuations in an isotropic medium[J]. Soviet journal of experimental and theoretical physics, 1958, 6: 130.
[29] FRANCOEUR M, PINAR MENGÜÇ M.Role of fluctuational electrodynamics in near-field radiative heat transfer[J]. Journal of quantitative spectroscopy and radiative transfer, 2008, 109(2): 280-293.
[30] POLDER D, VAN HOVE M.Theory of radiative heat transfer between closely spaced bodies[J]. Physical review B, 1971, 4(10): 3303-3314.
[31] RYTOV S M, KRAVTSOV Y A, TATARSKII V I.Principles of statistical radiophysics 3[M]. Berlin: Heidelberg Springer, 1989.
[32] MULET J P, JOULAIN K, CARMINATI R, et al.Enhanced radiative heat transfer at nanometric distances[C]//Proceeding of Heat Transfer and Transport Phenomena in Microscale. Banff, Canada, 2023.
[33] FRANCOEUR M, PINAR MENGÜÇ M, VAILLON R.Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method[J]. Journal of quantitative spectroscopy and radiative transfer, 2009, 110(18): 2002-2018.
[34] CHEN K F, ZHAO B, FAN S H.MESH: a free electromagnetic solver for far-field and near-field radiative heat transfer for layered periodic structures[J]. Computer physics communications, 2018, 231: 163-172.
[35] LEVINSTEIN M, RUMYANTSEV S, SHUR M.Handbook series on semiconductor parameters[M]. London: World Scientific, 1997: 147-168.
[36] WHALE M D, CRAVALHO E G.Modeling and performance of microscale thermophotovoltaic energy conversion devices[J]. IEEE transactions on energy conversion, 2002, 17(1): 130-142.
[37] SONG J, HAN J, CHOI M, et al.Modeling and experiments of near-field thermophotovoltaic conversion: a review[J]. Solar energy materials and solar cells, 2022, 238: 111556.
[38] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版. 北京: 电子工业出版社, 2008.
LIU E K, ZHU B S, LUO J S.Semiconductor physics[M]. 7th edition. Beijing: Publishing House of Electronics Industry, 2008.
[39] LAROCHE M, CARMINATI R, GREFFET J J.Near-field thermophotovoltaic energy conversion[J]. Journal of applied physics, 2006, 100(6): 063704.
[40] XU W H, LIU Y H, TANG L L, et al.Simulation of Zinc-diffused InAs cells for low temperature thermophotovoltaic systems[J]. Infrared physics & technology, 2021, 115: 103719.
[41] INOUE T, KOYAMA T, KANG D D, et al.One-chip near-field thermophotovoltaic device integrating a thin-film thermal emitter and photovoltaic cell[J]. Nano letters, 2019, 19(6): 3948-3952.

基金

国家自然科学基金(51976045)

PDF(4830 KB)

Accesses

Citation

Detail

段落导航
相关文章

/