基于新疆地区不同下垫面类型的肖塘、和田、阿勒泰站辐射观测数据,评估FY-4A地表太阳辐射产品在该区域的适用性,并结合FY-4A的云覆盖率和沙尘检测数据,分析其误差来源。结果表明:从一致性来看,FY-4A与3个站点地面观测辐照度的相关系数均在0.8以上,肖塘站一致性最好,阿勒泰站次之,和田站最差。从误差方面看,FY-4A总体数值偏高且有着“高值低估,低值高估”的特点,其适用性在肖塘站最好,阿勒泰站次之,和田站最差,绝对误差分别为93.62、103.47、135.38 W/m2,FY-4A在3个站点的绝对误差均在夏季达到最大值(大于114.08 W/m2),在冬季达到最小值(小于102.21 W/m2);相较于11:00—14:00,3个站点在07:00—10:00和15:00—18:00对FY-4A的误差会更大。从误差来源看,云覆盖率大于80%时两者之间相对误差大于90%的最小占比为17.05%;晴空条件下,和田站无沙尘像元,肖塘和阿勒泰站沙尘像元较非沙尘像元绝对误差分别增大38.20和15.02 W/m2,有云条件下和田和阿勒泰站沙尘像元较非沙尘像元绝对误差分别增大43.43和22.37 W/m2,而肖塘站减小80.67 W/m2,这是由于该站点沙尘像元样本数超过一半分布在FY-4A辐射反演效果最好的范围。
Abstract
Based on radiation observation data from Xiaotang, Hetian, and Altai stations with different underlying surface types in Xinjiang, this study evaluates the applicability of FY-4A surface solar radiation products in the region. Combining FY-4A’s CFR and DSD products, the sources of errors are analyzed. Results indicate that, in terms of consistency, FY-4A correlates above 0.8 with ground observation radiation data at all three stations, with Xiaotang station exhibiting the best consistency, followed by Altai, and Hetian showing the least. In terms of errors, FY-4A generally exhibits higher values overall with a characteristic of ‘high values underestimate, low values overestimate’. Its applicability is best at Xiaotang station, followed by Altai, and poorest at Hetian, with mean absolute errors of 93.62 and 135.38 W/m2,respectively. FY-4A’s mean absolute errors at all three stations reaches maximum values in summer (greater than 114.08 W/m2) and minimum values in winter (less than 102.21 W/m2). Compared to 11:00—14:00, errors are larger at 07:00—10:00 and 15:00—18:00 at all three stations. Analyzing error sources, when cloud cover exceeds 80%, the minimum proportion with a relative error greater than 90% is 17.05%. Under clear sky conditions, Hetian station has no dust pixels, while Xiaotang and Altai stations’mean absolute errors for dust pixels increase by 38.20 and 15.02 W/m2 respectively. Under cloudy conditions, Hetian and Altay stations’mean absolute errors for dust pixels increase by 43.43 and 22.37 W/m2 respectively, while Xiaotang station decreases by 80.67 W/m2 due to more than half of its dust pixels being in the optimal range for FY-4A radiation retrieval.
关键词
入射太阳辐射 /
卫星数据 /
地面观测 /
FY-4A /
云覆盖率
Key words
incident solar radiation /
satellite data /
surface observation /
FY-4A /
cloud covers
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张志清, 陆风, 方翔, 等. FY-4卫星应用和发展[J]. 上海航天, 2017, 34(4): 8-19.
ZHANG Z Q, LU F, FANG X, et al.Application and development of FY-4 meteorological satellite[J]. Aerospace Shanghai, 2017, 34(4): 8-19.
[2] 王飞, 李娜, 苏营, 等. 基于卫星遥感的辐照度时空关联映射与预测建模[J]. 太阳能学报, 2024, 45(3): 1-9.
WANG F, LI N, SU Y, et al.Spatiotemporal correlation mapping and prediction modeling of irradiance based on satellite remote sensing[J]. Acta energiae solaris sinica, 2024, 45(3): 1-9.
[3] WILD M, GILGEN H, ROESCH A, et al.From dimming to brightening: decadal changes in solar radiation at earth’s surface[J]. Science, 2005, 308(5723): 847-850.
[4] LETU H S, YANG K, NAKAJIMA T Y, et al.High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite[J]. Remote sensing of environment, 2020, 239: 111583.
[5] 胡斯勒图, 施建成, 李明, 等. 基于卫星数据的地表下行短波辐射估算: 方法、进展及问题[J]. 中国科学: 地球科学, 2020, 50(7): 887-902.
HU S L T, SHI J C, LI M, et al. A review of the estimation of downward surface shortwave radiation based on satellite data: methods, progress and problems[J]. Scientia sinica (earth sciences), 2020, 50(7): 887-902.
[6] YANG J, ZHANG Z Q, WEI C Y, et al.Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658.
[7] LIU X, KANG Y, LIU Q, et al.Evaluation of net shortwave radiation over China with a regional climate model[J]. Climate research, 2020, 80(2): 147-163.
[8] 王传辉, 申彦波, 翟振芳, 等. FY-4A星地面太阳辐射产品检验与订正: 以安徽省为例[J]. 太阳能学报, 2021, 42(9): 159-169.
WANG C H, SHEN Y B, ZHAI Z F, et al.Verifications and corrections of surface solar radiation products from FY-4A satellite: as a case study in anhui province[J]. Acta energiae solaris sinica, 2021, 42(9): 159-169.
[9] 梁进秋, 申彦波, 胡丽琴, 等. FY-4A地表太阳入射辐射产品在山西高原的适用性研究[J]. 气象, 2020, 46(12): 1575-1585.
LIANG J Q, SHEN Y B, HU L Q, et al.Applicability of FY-4A surface solar irradiance products in the Loess Plateau of Shanxi[J]. Meteorological monthly, 2020, 46(12): 1575-1585.
[10] 丁立国, 申彦波, 马勋丹, 等. FY-4A地面太阳辐射产品在贵州高原山区的适用性研究[J]. 高原气象, 2022, 41(4): 1041-1050.
DING L G, SHEN Y B, MA X D, et al.Applicability of the solar radiation products from FY-4A in plateau mountainous areas of Guizhou[J]. Plateau meteorology, 2022, 41(4): 1041-1050.
[11] 陈蔺鸿, 张彦丽, 宋雨钰. FY-4A太阳短波辐射产品在黑河流域的精度分析[J]. 生态学杂志, 2021, 40(1): 292-300.
CHEN L H, ZHANG Y L, SONG Y Y.Accuracy analysis of shortwave solar radiation products derived from FY-4A in the Heihe River Basin[J]. Chinese journal of ecology, 2021, 40(1): 292-300.
[12] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[13] 冯刚, 李卫华, 韩宇, 等. 新疆太阳能资源及区划[J]. 可再生能源, 2010, 28(3): 133-139.
FENG Gang, LI W H, HAN Y, et al.The solar energy resources of Xinjiang and its distribution[J]. Renewable energy resources, 2010, 28(3): 133-139.
[14] PINKER R T, TARPLEY J D, LASZLO I, et al.Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project[J]. Journal of geophysical research: atmospheres, 2003, 108(D22): 8844.
[15] 周洒洒, 何清, 金莉莉, 等. 塔克拉玛干沙漠北缘绿洲-荒漠过渡带辐射特征: 以肖塘为例[J]. 中国沙漠, 2020, 40(4): 43-51.
ZHOU S S, HE Q, JIN L L, et al.Radiation characteristics of the oasis-desert transition zone in the northern margin of the Taklimakan desert: a case study of Xiaotang[J]. Journal of desert research, 2020, 40(4): 43-51.
[16] LONG C N, SHI Y.An automated quality assessment and control algorithm for surface radiation measurements[J]. The open atmospheric science journal, 2008, 2(1): 23-37.
[17] 宋建洋, 郑向东, 程兴宏, 等. 临安与龙凤山辐射数据质量及初步结果比较[J]. 应用气象学报, 201, 24(1): 65-74.
SONG J Y, ZHENG X D, CHENG X H, et al.Quality evaluations and comparisons of radiation data at Lin’an and Longfengshan sations[J]. Journal of applied meteorological science, 201, 24(1): 65-74.
[18] 郑向东, 赵勇. 南极中山站国产地面太阳辐射观测系统运行评估[J]. 应用气象学报, 20, 34(3): 348-361.
ZHENG X D, ZHAO Y.Performance of domestically made surface solar radiation observation system at Zhongshan station, Antarctica[J]. Journal of applied meteorological science, 20, 34(3): 348-361.
[19] GU Y, LIOU K N, LEE W L, et al.Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF[J]. Atmospheric chemistry and physics, 2012, 12(20): 9965-9976.
[20] LIOU K N, GU Y, LEUNG L R, et al.A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada[J]. Atmospheric chemistry and physics, 2013, 13(23): 11709-11721.
[21] 徐丽娜, 申彦波, 李忠, 等. 基于概率密度匹配方法的FY-4A地表入射太阳辐射订正[J]. 高原气象, 2021, 40(4): 932-942.
XU L N, SHEN Y B, LI Z, et al.Correction of FY-4A surface solar irradiance based on probability density function matching method[J]. Plateau meteorology, 2021, 40(4): 932-942.
[22] 鄢俊洁, 郭雪星, 瞿建华, 等. 基于朴素贝叶斯方法的FY-4A/AGRI云检测模型[J]. 自然资源遥感, 20, 34(3): 33-42.
YAN J J, GUO X X, QU J H, et al.An FY-4A / AGRI cloud detection model based on the naive Bayes algorithm[J]. Remote sensing for natural resources, 20, 34(3): 33-42.
[23] 高泽田, 胡秀清, 张小曳, 等. 基于FY-4A卫星遥感数据分析2021年3次沙尘暴特征[J]. 气象科技, 2022, 50(4): 536-544.
GAO Z T, HU X Q, ZHANG X Y, et al.Characteristic analysis of three sand-dust storm process in 2021 based on FY-4A satellite remote sensing data[J]. Meteorological science and technology, 2022, 50(4): 536-544.
基金
上海合作组织科技伙伴计划及国际科技合作计划项目(2022E01047); 国家自然科学基金(42330603、42030612)