弱电网下基于ANFIS的光储VSG控制策略

吴宏伟, 汪石农, 葛愿, Ahmed Amer Ragab

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 302-310.

PDF(3586 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3586 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 302-310. DOI: 10.19912/j.0254-0096.tynxb.2024-0086

弱电网下基于ANFIS的光储VSG控制策略

  • 吴宏伟1, 汪石农1, 葛愿1, Ahmed Amer Ragab2
作者信息 +

ANFIS-BASED CONTROL STRATEGY FOR PHOTOVOLTAIC AND NERGY STORAGE SYSTEM VSG IN WEAK GRID

  • Wu Hongwei1, Wang Shinong1, Ge Yuan1, Ahmed Amer Ragab2
Author information +
文章历史 +

摘要

传统的虚拟同步发电机(VSG)控制策略由于缺少动态调节虚拟惯量和阻尼系数的能力,已无法满足电网实际接入的需求。为解决这一问题,首先针对VSG控制的工作特性建立VSG输出阻抗的小信号模型,绘制出回率矩阵特征值的奈奎斯特曲线图,分析VSG处于不同电网强度下的稳定性;然后,结合VSG有功功率环的小信号模型,推导出VSG的虚拟惯量和阻尼系数取值范围,进而引出基于自适应神经模糊推理系统(ANFIS)的光储VSG控制策略;最后,在Matlab/Simulink中搭建光储VSG仿真模型,仿真结果验证该控制策略的有效性。

Abstract

Traditional virtual synchronous generator (VSG) control strategy is unable to meet the actual grid integration requirements due to inability to dynamically adjust virtual inertia and damping coefficient. To address this issue, this article first establishes the output impedance model of the VSG based on the working characteristics of VSG control. The Nyquist curve of the eigenvalues of the return ratio matrix eigenvalues is plotted to analyze the stability of VSG under different grid strengths. By combining the small-signal model of the VSG active power loop, the range of virtual inertia and damping coefficient values for VSG is derived. This leads to the proposal of a control strategy for photovoltaic and storage system VSG based on an adaptive neural fuzzy inference system (ANFIS). Finally, a photovoltaic and storage system VSG simulation model is built in Matlab/Simulink, and the simulation results validate the effectiveness of this control strategy.

关键词

分布式电源 / 虚拟同步发电机 / 弱电网 / ANFIS / 储能系统

Key words

distributed generator / VSG / weak grid / ANFIS / energy storage system

引用本文

导出引用
吴宏伟, 汪石农, 葛愿, Ahmed Amer Ragab. 弱电网下基于ANFIS的光储VSG控制策略[J]. 太阳能学报. 2025, 46(5): 302-310 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0086
Wu Hongwei, Wang Shinong, Ge Yuan, Ahmed Amer Ragab. ANFIS-BASED CONTROL STRATEGY FOR PHOTOVOLTAIC AND NERGY STORAGE SYSTEM VSG IN WEAK GRID[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 302-310 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0086
中图分类号: TM73   

参考文献

[1] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175.
ZHENG T W, CHEN L J, CHEN T Y, et al.Review and prospect of virtual synchronous generator technologies[J]. Automation of electric power systems, 2015, 39(21): 165-175.
[2] 朱作滨, 孙树敏, 丁月明, 等. 基于自适应VSG控制策略永磁直驱风电系统研究[J]. 太阳能学报, 2024, 45(1): 116-124.
ZHU Z B, SUN S M, DING Y M, et al.Research on PMSG wind power system based on adaptive VSG control strategy[J]. Acta energiae solaris sinica, 2024, 45(1): 116-124.
[3] 朱作滨, 孙树敏, 丁月明, 等. 基于VSG的低电压穿越控制策略研究[J]. 太阳能学报, 2024, 45(2): 376-383.
ZHU Z B, SUN S M, DING Y M, et al.Study on low voltage ride through control strategy based on VSG[J]. Acta energiae solaris sinica, 2024, 45(2): 376-383.
[4] NAZIH A, OSHEBA D S M, MANSOUR A S. Virtual inertia impact on the performance of photovoltaic system[C]//2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE). Aswan City, Egypt, 2019: 7-11.
[5] SHAO Y Y, ZHU C Z, DONG S F, et al.Adaptive damping coefficient control of virtual synchronous generator of microgrid inverter[C]//2019 29th Australasian Universities Power Engineering Conference (AUPEC). Nadi, Fiji, 2019: 1-6.
[6] CHEN X W, LI Q, WANG T H, et al.Coordinated adaptive control strategy of rotational inertia and damping coefficient for virtual synchronous generator[C]//2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). Beijing, China, 2022: 214-219.
[7] CUI F H, ZHANG B G.Adaptive control strategy for moment of inertia and damping coefficient of virtual synchronous generator[C]//2022 4th International Conference on Power and Energy Technology (ICPET). Beijing, China, 2022: 193-197.
[8] WANG Y Q, YANG D N, FAN Z H, et al.Research on parameter adaptive control strategy of virtual synchronous generator[C]//2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Shanghai, China, 2022: 292-297.
[9] YAO F J, ZHAO J B, LI X J, et al.RBF neural network based virtual synchronous generator control with improved frequency stability[J]. IEEE transactions on industrial informatics, 2021, 17(6): 4014-4024.
[10] 周建萍, 胡成奕, 茅大钧, 等. 基于模糊控制的自适应虚拟同步发电机控制策略[J]. 广东电力, 2020, 33(1): 53-60.
ZHOU J P, HU C Y, MAO D J, et al.Adaptive virtual synchronous generator control strategy based on fuzzy control[J]. Guangdong electric power, 2020, 33(1): 53-60.
[11] GAO W.Microgrid control strategy based on battery energy storage system-virtual synchronous generator (BESS-VSG)[C]//2020 IEEE Kansas Power and Energy Conference (KPEC). Manhattan, KS, USA, 2020: 1-6.
[12] 施凯, 陈磊. 弱电网下提高VSG稳定性的虚拟阻抗方法[J]. 电力科学与工程, 2021, 37(7): 26-33.
SHI K, CHEN L.Virtual impedance method to improve the stability of VSG under weak grid[J]. Electric power science and engineering, 2021, 37(7): 26-33.
[13] FANG C X, LIU Y, HU Z P, et al.Stability analysis of photovoltaic and battery energy storage systems integrated to weak grid[C]//2020 IEEE 3rd International Conference on Electronics Technology (ICET). Chengdu, China, 2020: 480-484.
[14] SONG Z H, ZHANG J D, TANG F, et al.Small signal modeling and parameter design of virtual synchronous generator to weak grid[C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). Wuhan, China, 2018: 2618-2624.
[15] JANG J R.ANFIS: adaptive-network-based fuzzy inference system[J]. IEEE transactions on systems, man, and cybernetics, 1993, 23(3): 665-685.
[16] 谭心, 吴林锋, 虞启辉, 等. 基于ANFIS的太阳能-空气源热泵供暖系统温度控制研究[J]. 太阳能学报, 2024, 45(2): 16-22.
TAN X, WU L F, YU Q H, et al.Temperature control research of solar-air source heat pump heating system based on ANFIS[J]. Acta energiae solaris sinica, 2024, 45(2): 16-22.
[17] GUO J, CHEN Y D, WANG L, et al.Impedance analysis and stabilization of virtual synchronous generators with different DC-link voltage controllers under weak grid[J]. IEEE transactions on power electronics, 2021, 36(10): 11397-11408.
[18] 韩刚, 蔡旭. 虚拟同步发电机输出阻抗建模与弱电网适应性研究[J]. 电力自动化设备, 2017, 37(12): 116-122.
HAN G, CAI X.Output impedance modeling of virtual synchronous generator and its adaptability study in a weak grid[J]. Electric power automation equipment, 2017, 37(12): 116-122.
[19] 周唱. 弱电网下VSG稳定性分析和控制策略研究[D]. 哈尔滨: 哈尔滨理工大学, 2022.
ZHOU C.VSG stability analysis and control strategy research under weak grid[D]. Harbin: Harbin University of Science and Technology, 2022.
[20] 朱凯. 弱电网下光伏逆变器的虚拟同步机控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
ZHU K.Research on control strategy of virtual synchronous machine for photovoltaic inverter under weak grid[D]. Harbin: Harbin Institute of Technology, 2019.
[21] 吴鸣, 吕志鹏, 秦岭, 等. 变电网运行条件下虚拟同步发电机鲁棒控制参数设计[J]. 电网技术, 2019, 43(10): 3743-3753.
WU M, LYU Z P, QIN L, et al.Robust control parameter design for virtual synchronous generator under variable operation conditions of grid[J]. Power system technology, 2019, 43(10): 3743-3753.
[22] 李吉祥, 赵晋斌, 屈克庆, 等. 考虑SOC特性的微电网VSG运行参数边界分析[J]. 电网技术, 2018, 42(5): 1451-1457.
LI J X, ZHAO J B, QU K Q, et al.Boundary analysis of operation parameters of microgrid VSG considering SOC characteristics[J]. Power system technology, 2018, 42(5): 1451-1457.
[23] 孙亚帅. 光储并网虚拟同步发电机运行控制策略[D]. 秦皇岛: 燕山大学, 2021.
SUN Y S.Operation control strategy of grid-connected virtual synchronous generator with photovoltaic and energy storage[D]. Qinhuangdao: Yanshan University, 2021.
[24] 金爱娟, 邵飞旋, 严紫光. 基于自适应模糊神经网络的感应电机矢量控制[J]. 电子科技, 2022, 35(9): 65-73.
JIN A J, SHAO F X, YAN Z G.Vector control of induction motor based on adaptive fuzzy neural network[J]. Electronic science and technology, 2022, 35(9): 65-73.

基金

国家自然科学基金(U21A20146); 安徽省教育厅自然科学重点项目(KJ2021A0508); 安徽省高校协同创新项目(GXXT-2020-070)

PDF(3586 KB)

Accesses

Citation

Detail

段落导航
相关文章

/