基于蒙特卡洛法的光伏系统老化评估及发电量预测方法研究

汤霜霜, 白建波, 侯天才, 聂海缘, 项立鹏, 郑爽

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 311-319.

PDF(1519 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1519 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 311-319. DOI: 10.19912/j.0254-0096.tynxb.2024-0089

基于蒙特卡洛法的光伏系统老化评估及发电量预测方法研究

  • 汤霜霜1, 白建波2, 侯天才1, 聂海缘1, 项立鹏1, 郑爽1
作者信息 +

RESEARCH ON AGING ASSESSMENT AND POWER GENERATION PREDICTION OF PHOTOVOLTAIC SYSTEM BASED ON MONTE CARLO METHOD

  • Tang Shuangshuang1, Bai Jianbo2, Hou Tiancai1, Nie Haiyuan1, Xiang Lipeng1, Zheng Shuang1
Author information +
文章历史 +

摘要

针对光伏系统运行期间组件发生老化衰减的问题,构建一个全面的光伏系统老化评估及发电量预测模型,并对其进行有效性验证。运用蒙特卡洛法模拟组件老化后不一致变化的电性能参数,解决因老化速率不同而引起的失配衰减率及老化总衰减率计算难题,并基于老化总衰减率对光伏系统投运期间逐年发电量进行预测。结合案例分析,以25 a为投运年限,对不同光伏系统投运期间的老化总衰减率及发电量预测进行仿真并与PVsyst对比,结果表明,采用蒙特卡洛的算法模型具有较高的精度,可用于评估光伏系统投运期间的老化总衰减率、预测未来的发电量,最后基于光伏系统老化规律提出阶段性维护建议。

Abstract

A comprehensive photovoltaic system aging assessment and power generation prediction model was constructed to address the issue of components aging during the operation of the photovoltaic system, and its effectiveness was validated. The Monte Carlo method was used to simulate the inconsistent changes in electrical parameters due to component aging to calculate the total aging rate and mismatch rate caused by varying aging rates. Additionally, the annual power generation during the operation of the photovoltaic system was predicted based on the total aging rate. The total aging rate and power generation prediction of different photovoltaic systems over 25 years of operation were simulated based on case analysis. The comparison results show that the algorithm model using Monte Carlo exhibits high accuracy and can be applied to evaluate the total aging rate and predict future power generation of the photovoltaic system during operation. Finally, phased maintenance recommendations were provided based on the aging patterns of photovoltaic systems.

关键词

光伏系统 / 发电量 / 老化 / 失配 / 蒙特卡洛法

Key words

photovoltaic system / power generation / aging / mismatch / Monte Carlo method

引用本文

导出引用
汤霜霜, 白建波, 侯天才, 聂海缘, 项立鹏, 郑爽. 基于蒙特卡洛法的光伏系统老化评估及发电量预测方法研究[J]. 太阳能学报. 2025, 46(5): 311-319 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0089
Tang Shuangshuang, Bai Jianbo, Hou Tiancai, Nie Haiyuan, Xiang Lipeng, Zheng Shuang. RESEARCH ON AGING ASSESSMENT AND POWER GENERATION PREDICTION OF PHOTOVOLTAIC SYSTEM BASED ON MONTE CARLO METHOD[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 311-319 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0089
中图分类号: TM615   

参考文献

[1] 马伟伟. 基于序优化的分布式光伏配电网储能系统容量评估[J]. 太阳能学报, 2023, 44(9): 557.
MA W W.Capacity evaluation of distributed photovoltaic distribution network energy storage system based on sequential optimization[J]. Acta energiae solaris sinica, 2023, 44(9): 557.
[2] 刘卫亮, 姜锴越, 许之胜, 等. 基于数字孪生与融合神经网络的光伏阵列故障诊断[J]. 太阳能学报, 2024, 45(11): 303-312.
LIU W L, JIANG K Y, XU Z S, et al.Fault diagnosis of photovoltaic array based on digital twin and fusion neural network[J]. Acta energiae solaris sinica, 2024, 45(11): 303-312.
[3] MALIK P, CHANDEL R, CHANDEL S S.A power prediction model and its validation for a roof top photovoltaic power plant considering module degradation[J]. Solar energy, 2021, 224: 184-194.
[4] MATEO C, HERNÁNDEZ-FENOLLOSA M A, MONTERO Á, et al. Ageing and seasonal effects on amorphous silicon photovoltaic modules in a Mediterranean climate[J]. Renewable energy, 2022, 186: 74-88.
[5] AZIZI A, LOGERAIS P O, OMEIRI A, et al.Impact of the aging of a photovoltaic module on the performance of a grid-connected system[J]. Solar energy, 2018, 174: 445-454.
[6] MANGANIELLO P, BALATO M, VITELLI M.A survey on mismatching and aging of PV modules: the closed loop[J]. IEEE transactions on industrial electronics, 2015, 62(11): 7276-7286.
[7] 杨威, 杨洋. 组件功率衰减对光伏发电系统效率的影响[J]. 太阳能, 2017(5): 55-57.
YANG W, YANG Y.Effect of component power attenuation on photovoltaic system efficiency[J]. Solar energy, 2017(5): 55-57.
[8] 叶洪吉, 卫东, 郭倩, 等. 基于设计信息的分布式光伏电站预测发电量计算方法[J]. 太阳能学报, 2021, 42(4): 253-259.
YE H J, WEI D, GUO Q, et al.Calculation method of power generation forecast of distributed PV power station based on design information[J]. Acta energiae solaris sinica, 2021, 42(4): 253-259.
[9] TANG X P, ZOU C F, YAO K, et al.Aging trajectory prediction for lithium-ion batteries via model migration and Bayesian Monte Carlo method[J]. Applied energy, 2019, 254: 113591.
[10] SREENUCH T, ALGHASSI A, PERINPANAYAGAM S, et al.Probabilistic Monte-Carlo method for modelling and prediction of electronics component life[J]. International journal of advanced computer science and applications, 2014, 5(1).
[11] HUANG W, SHAO C Z, DONG M, et al.Modeling the aging-dependent reliability of transformers considering the individualized aging threshold and lifetime[J]. IEEE transactions on power delivery, 2022, 37(6): 4631-4645.
[12] 王跃, 白建波, 李建. 光伏发电系统精细化逐时建模方法与应用案例分析[J]. 太阳能, 2021(5): 59-66.
WANG Y, BAI J B, LI J.Refined hourly modeling method of PV power generation system and analysis of application cases[J]. Solar energy, 2021(5): 59-66.
[13] 白建波. 太阳能光伏系统建模、仿真与优化[M]. 北京: 电子工业出版社, 2014.
BAI J B.Modeling, simulation and optimization of solar photovoltaic system[M]. Beijing: Publishing House of Electronics Industry, 2014.
[14] BOYSON W, GALBRAITH G M, KING D, et al.Performance model for grid-connected photovoltaic inverters[R]. Sandia National Laboratories, 2007.
[15] 黄盛娟, 唐荣, 唐立军. 光伏组件功率衰减分析研究[J]. 太阳能, 2015(6): 21-25.
HUANG S J, TANG R, TANG L J.Research on power attenuation analysis of photovoltaic modules[J]. Solar energy, 2015(6): 21-25.
[16] TAO Y K, BAI J B, PACHAURI R K, et al.Parameter extraction of photovoltaic modules using a heuristic iterative algorithm[J]. Energy conversion and management, 2020, 224: 113386.
[17] 中华人民共和国工业和信息化部. 光伏制造行业规范条件(2018年本)[S]. 2018-01-15.
Ministry of Industry and Information Technology of the People’s Republic of China. Specifications and conditions of photovoltaic manufacturing industry(2018)[S]. 2018-01-15.
[18] 张凯, 黄嘉培, 韩会丽, 等. 不同技术类型光伏组件的户外发电性能及衰减分析[J]. 太阳能, 2021(3): 25-31.
ZHANG K, HUANG J P, HAN H L, et al.Outdoor power generation performance and attenuation analysis of PV modules with different technologies[J]. Solar energy, 2021(3): 25-31.

基金

国家重点研发计划(2022YFB4201000)

PDF(1519 KB)

Accesses

Citation

Detail

段落导航
相关文章

/