垂直轴风力机支撑杆构型对叶片气动性能影响

张晓斌, 张万福, 缪维跑, 李春, 司派友, 刘双白

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 506-514.

PDF(3938 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3938 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 506-514. DOI: 10.19912/j.0254-0096.tynxb.2024-0096

垂直轴风力机支撑杆构型对叶片气动性能影响

  • 张晓斌1, 张万福2, 缪维跑2, 李春2, 司派友1, 刘双白1
作者信息 +

EFFECTS OF STRUT PROFILES ON BLADE AERODYNAMIC PERFORMANCE OF VERTICAL-AXIS WIND TURBINES

  • Zhang Xiaobin1, Zhang Wanfu2, Miao Weipao2, Li Chun2, Si Paiyou1, Liu Shuangbai1
Author information +
文章历史 +

摘要

该文通过三维计算流体力学方法对直叶片垂直轴风力机的支撑杆开展研究,对比分析4种不同支撑杆截面构型影响风力机叶片的流动机理。结果表明:支撑杆阻力特性与截面构型密切相关,其中圆柱形将导致风轮无法输出功率,而纺锤形支撑杆阻力性能相对最优,风轮总效率下降最少;支撑杆的直接阻力在相对风速较大的相位角时更加显著,而间接阻力主要影响垂直轴风力机叶片的吸力面。

Abstract

The strut is a necessary structure to connect the blades and transmit torque in vertical axis wind turbines, and it is also one of the main factors affecting the aerodynamic performance. Most studies have used simplified two-dimensional models, which cannot account for the influence of the strut on the aerodynamic performance of vertical axis wind turbine. Therefore, a study on the strut of a vertical axis wind turbine with straight blades using a three-dimensional computational fluid dynamics method is carried out, and the flow mechanisms of four different strut profiles affecting the blades of the wind turbine are analyzed. The results show that: the drag characteristics of the strut are closely related to its profiles. The cylindrical shape will result in the wind turbine being the unable to generate power, while the drag performance of the spindle-shaped strut is relatively optimal, causing the least decrease in total wind turbine efficency. The direct drag of the strut is more significant in the phase angle at higher relative wind speed, while the indirect drag mainly affects the suction surface of the blade of the vertical-axis wind turbine.

关键词

风力机 / 空气气动学 / 计算流体力学 / 支撑杆 / 截面 / 气动效率

Key words

wind turbines / aerodynamics / computational fluid dynamics / struts / profiles / aerodynamic efficiency

引用本文

导出引用
张晓斌, 张万福, 缪维跑, 李春, 司派友, 刘双白. 垂直轴风力机支撑杆构型对叶片气动性能影响[J]. 太阳能学报. 2025, 46(5): 506-514 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0096
Zhang Xiaobin, Zhang Wanfu, Miao Weipao, Li Chun, Si Paiyou, Liu Shuangbai. EFFECTS OF STRUT PROFILES ON BLADE AERODYNAMIC PERFORMANCE OF VERTICAL-AXIS WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 506-514 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0096
中图分类号: TK83   

参考文献

[1] 中华人民共和国中央人民政府.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL].(2021-03-13)[2023-07-22].http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
Central People’s Government of the People‘s Republic of China. Outline of the Fourteenth Five-Year Plan for National Economic and Social Development of the People's Republic of China and the Vision for2035. [EB/OL].(2021-03-13)[2023-07-22].http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
[2] TJIU W, MARNOTO T, MAT S, et al.Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development[J]. Renewable energy, 2015, 75: 560-571.
[3] HAND B, CASHMAN A.A review on the historical development of the lift-type vertical axis wind turbine: from onshore to offshore floating application[J]. Sustainable energy technologies and assessments, 2020, 38: 100646.
[4] HAND B, KELLY G, CASHMAN A.Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: a comprehensive review[J]. Renewable and sustainable energy reviews, 2021, 139: 110699.
[5] 刘陈, 运洪禄, 吕续舰. 基于CFD的二维垂直轴风力机性能计算[J]. 太阳能学报, 2020, 41(2): 144-151.
LIU C, YUN H L, LYU X J.CFD based study on two-dimension vertical axis wind turbines[J]. Acta energiae solaris sinica, 2020, 41(2): 144-151.
[6] ZANFORLIN S, DELUCA S.Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed vertical axis wind turbines[J]. Energy, 2018, 148: 179-195.
[7] MIAO W P, LIU Q S, ZHANG Q, et al.Recommendation for strut designs of vertical axis wind turbines: effects of strut profiles and connecting configurations on the aerodynamic performance[J]. Energy conversion and management, 2023, 276: 116436.
[8] 冯国英, 张守斌. 考虑动态失速与风轮支架损失的H型垂直轴风力机自由尾迹模型构建[J]. 太阳能学报, 2022, 43(6): 169-175.
FENG G Y, ZHANG S B.Free vortex wake model for H-shaped vertical axis wind turbines considering dynamic stall effect and struts loss[J]. Acta energiae solaris sinica, 2022, 43(6): 169-175.
[9] WORSTELL M H.Aerodynamic performance of the DOE/Sandia 17-m-diameter vertical-axis wind turbine[J]. Journal of energy, 1981, 5(1): 39-42.
[10] AIHARA A, MENDOZA V, GOUDE A, et al.A numerical study of strut and tower influence on the performance of vertical axis wind turbines using computational fluid dynamics simulation[J]. Wind energy, 2022, 25(5): 897-913.
[11] ELKHOURY M, KIWATA T, AOUN E.Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch[J]. Journal of wind engineering and industrial aerodynamics, 2015, 139: 111-123.
[12] 吴子牛. 计算流体力学基本原理[M]. 北京: 科学出版社, 2001.
WU Z N.Fundamentals of computational fluid mechanics [M]. Beijing: Science Press, 2001.
[13] BACHANT P, WOSNIK M, GUNAWAN B, et al.Experimental study of a reference model vertical-axis cross-flow turbine[J]. PLoS One, 2016, 11(9): e0163799.
[14] ISLAM M, AMIN M, TING D, et al.A new airfoil for the supporting struts of smaller-capacity straight-bladed VAWT[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Victoria, British Columbia, Canada, 2008: 5874.
[15] MARSH P, RANMUTHUGALA D, PENESIS I, et al.Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces[J]. Renewable energy, 2015, 83: 67-77.
[16] HARA Y, HORITA N, YOSHIDA S, et al.Numerical analysis of effects of arms with different cross-sections on straight-bladed vertical axis wind turbine[J]. Energies, 2019, 12(11): 2106.
[17] LI Q A, MAEDA T, KAMADA Y, et al.Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)[J]. Energy, 2016, 106: 443-452.
[18] LADSON C L, BROOKS C W, Development of a computer program to obtain ordinates for NACA 4-digit, 4-digit modified, 5-digit, and 16 series airfoils[R]. No.L-10375, 1975.
[19] 张强, 缪维跑, 刘青松, 等. 垂直轴风力机变桨控制策略及气动性能影响研究[J]. 太阳能学报, 2022, 43(10): 296-303.
ZHANG Q, MIAO W P, LIU Q S, et al.Research on pitch control strategy and aerodynamic performance of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2022, 43(10): 296-303.
[20] ZHANG T T, ELSAKKA M, HUANG W, et al.Winglet design for vertical axis wind turbines based on a design of experiment and CFD approach[J]. Energy conversion and management, 2019, 195: 712-726.
[21] DARÓCZY L, JANIGA G, PETRASCH K, et al. Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors[J]. Energy, 2015, 90: 680-690.
[22] 李根, 缪维跑, 李春, 等. 垂直轴风力机气动特性与涡脱落模态分析[J]. 太阳能学报, 2023, 44(2): 41-51.
LI G, MIAO W P, LI C, et al.Aerodynamic characteristics and vortex shedding modal analysis of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2023, 44(2): 41-51.
[23] REZAEIHA A, MONTAZERI H, BLOCKEN B.CFD analysis of dynamic stall on vertical axis wind turbines using scale-adaptive simulation (SAS): Comparison against URANS and hybrid RANS/LES[J]. Energy conversion and management, 2019, 196: 1282-1298.
[24] MIAO W P, LIU Q S, XU Z F, et al.A comprehensive analysis of blade tip for vertical axis wind turbine: aerodynamics and the tip loss effect[J]. Energy conversion and management, 2022, 253: 115140.
[25] REZAEIHA A, MONTAZERI H, BLOCKEN B.Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence[J]. Energy conversion and management, 2018, 156: 301-316.

基金

华北电力科学研究院有限责任公司科技项目(KJZ2022014); 国家自然科学基金(52106262; 52376204); 上海市Ⅳ类高峰学科-能源科学与技术-上海非碳基能源转换与利用研究院建设项目资助

PDF(3938 KB)

Accesses

Citation

Detail

段落导航
相关文章

/