为研究风力机气动载荷对不同热稳定性大气边界层的响应,该文通过大涡模拟方法实现了不同大气稳定性下入流条件的模拟,然后通过数值模拟计算NREL 1.5 MW风力机在不同大气稳定性下的气动载荷,并对其进行连续小波分析、频谱分析和统计特征分析。结果表明:大气稳定性对风力机气动载荷有显著影响,对流、中性和稳定天气条件下风力机功率和气动载荷的波动均与流向风速呈明显的正相关关系,但不同大气热稳定条件下功率和气动载荷对来流风速的响应频率不同,对流、中性和稳定条件下的响应频段分别为0.02~0.04、0.03~0.06和0.00~0.02 Hz,且对流条件下载荷波动最激烈,稳定条件下波动最小;对流和中性条件下瞬时功率波动可达1289.90和1132.40 kW,挥舞力矩波动可达1229.90和1103.40 kN·m。可见,在风力机功率和气动载荷预测时考虑大气稳定性的影响,可使评估结果更精准,有利于风力机的安全运行。
Abstract
In order to investigate the impact of different atmospheric stabilities on the aerodynamic loads of wind turbines, large-eddy simulation (LES) is utilized to simulate the inflow conditions representative of various stability regimes. The atmospheric load response of the NREL 1.5 MW wind turbine to these stability conditions is then calculated using numerical simulation, followed by continuous wavelet analysis, spectral analysis, and statistical feature analysis of the aerodynamic loads. The results show there are significant influences of atmospheric stability on wind turbine aerodynamic loads. Both power and aerodynamic load fluctuations of the wind turbine demonstrate pronounced positive correlations with streamwise wind velocity under convective, neutral, and stable atmospheric conditions. However, the response frequency of the power and load to the inflow under different atmospheric thermal stabilities are different, with response bands of 0.02-0.04 Hz, 0.03-0.06 Hz, and 0.00-0.02 Hz for convective, neutral, and steady boundary layers, respectively. The load fluctuations are most pronounced under convective conditions, and smallest under stable conditions. The transient power fluctuation of wind turbine can respective reach 1289.90 kW and 1132.40 kW under convection and neutral thermal stabilities, while that of blade root flapwise moment are 1229.90 kN·m and 1103.40 kN·m, respectively. The results show a more accuracy estimation of turbine power and load can be obtained when takes into consideration the influence of atmospheric stability, which is conducive to the safe operation of wind turbines.
关键词
风力机 /
大气稳定性 /
气动载荷 /
频谱分析 /
小波分析
Key words
wind turbines /
atmospheric stability /
aerodynamic loads /
spectral analysis /
wavelet analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42(6): 409-418.
ZHU R, WANG Y, XIANG Y, et al.Study on climate characteristics and development potential of wind energy resources in China[J]. Acta energiae solaris sinica, 2021, 42(6): 409-418.
[2] 冯俊鑫, 赵振宙, 陈明, 等. 叶片挥舞运动对风力机气动特性的影响[J]. 太阳能学报, 2023, 44(7): 478-485.
FENG J X, ZHAO Z Z, CHEN M, et al.Research on influence of blade flapping motion on aerodynamic characteristics of wind turbine[J]. Acta energiae solaris sinica, 2023, 44(7): 478-485.
[3] TIAN L L, SONG Y L, ZHAO N, et al.Numerical investigations into the idealized diurnal cycle of atmospheric boundary layer and its impact on wind turbine’s power performance[J]. Renewable energy, 2020, 145: 419-427.
[4] LIU H W, JIN Y Q, TOBIN N, et al.Towards uncovering the structure of power fluctuations of wind farms[J]. Physical review E, 2017, 96(6): 063117.
[5] ZHANG W, MARKFORT C D, PORTÉ-AGEL F.Wind-turbine wakes in a convective boundary layer: a wind-tunnel study[J]. Boundary-layer meteorology, 2013, 146(2): 161-179.
[6] HANSEN K S, BARTHELMIE R J, JENSEN L E, et al.The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm[J]. Wind energy, 2012, 15(1): 183-196.
[7] PORTÉ-AGEL F, BASTANKHAH M, SHAMSODDIN S.Wind-turbine and wind-farm flows: a review[J]. Boundary-layer meteorology, 2020, 174(1): 1-59.
[8] ENGLBERGER A, DÖRNBRACK A. Impact of the diurnal cycle of the atmospheric boundary layer on wind-turbine wakes: a numerical modelling study[J]. Boundary-layer meteorology, 2018, 166(3): 423-448.
[9] BARTHELMIE R J, JENSEN L E.Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm[J]. Wind energy, 2010, 13(6): 573-586.
[10] WHARTON S, LUNDQUIST J K.Atmospheric stability affects wind turbine power collection[J]. Environmental research letters, 2012, 7(1): 014005.
[11] HAN X X, LIU D Y, XU C, et al.Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain[J]. Renewable energy, 2018, 126: 640-651.
[12] SATHE A, MANN J, BARLAS T, et al.Influence of atmospheric stability on wind turbine loads[J]. Wind energy, 2013, 16(7): 1013-1032.
[13] DOUBRAWA P, CHURCHFIELD M J, GODVIK M, et al.Load response of a floating wind turbine to turbulent atmospheric flow[J]. Applied energy, 2019, 242: 1588-1599.
[14] ABKAR M, PORTÉ-AGEL F.Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study[J]. 2015, 27(3): 035104.
[15] NIELSON J, BHAGANAGAR K.Using field data-based large eddy simulation to understand role of atmospheric stability on energy production of wind turbines[J]. Wind engineering, 2019, 43(6): 625-638.
[16] CHURCHFIELD M, LEE S, MORIARTY P, et al.A large-eddy simulation of wind-plant aerodynamics[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee, USA, 2012: 537.
[17] GHAISAS N S, ARCHER C L, XIE S B, et al.Evaluation of layout and atmospheric stability effects in wind farms using large-eddy simulation[J]. Wind energy, 2017, 20(7): 1227-1240.
[18] YANG X I A, ABKAR M. A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers[J]. Journal of fluid mechanics, 2018, 842: 354-380.
[19] ZHANG H, GE M W, LIU Y Q, et al.A new coupled model for the equivalent roughness heights of wind farms[J]. Renewable energy, 2021, 171: 34-46.
[20] HOWLAND M F, YANG X I A. Dependence of small-scale energetics on large scales in turbulent flows[J]. Journal of fluid mechanics, 2018, 852: 641-662.
[21] YANG X I A, PARK G I, MOIN P. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations[J]. Physical review fluids, 2017, 2(10): 104601.
[22] DU B W, GE M W, ZENG C J, et al.Influence of atmospheric stability on wind-turbine wakes with a certain hub-height turbulence intensity[J]. Physics of fluids, 2021, 33(5): 055111.
[23] GE M W, GAYME D F, MENEVEAU C.Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building[J]. Renewable energy, 2021, 163: 1063-1077.
[24] YANG X I A, SADIQUE J, MITTAL R, et al. Integral wall model for large eddy simulations of wall-bounded turbulent flows[J]. 2015, 27(2): 025112.
[25] YANG D, MENEVEAU C, SHEN L.Effect of downwind swells on offshore wind energy harvesting: a large-eddy simulation study[J]. Renewable energy, 2014, 70: 11-23.
[26] 王燕, 周永泽, 柴永奋, 等. 大气稳定性对风力机尾流影响的大涡模拟研究[J]. 华中科技大学学报(自然科学版), 2023, 51(11): 165-172.
WANG Y, ZHOU Y Z, CHAI Y F, et al.Research on influence of atmospheric stability on wind turbine wakes with large eddy simulation[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2023, 51(11): 165-172.
[27] 程杰. 不同大气稳定性下湍流尺度对风力机气动性能和尾流特性的影响研究[D]. 兰州: 兰州理工大学, 2023.
CHENG J.The research of the impact of turbulence scale on aerodynamic performance and wake characteristics of wind turbines under different atmospheric stability[D]. Lanzhou: Lanzhou University of Technology, 2023.
[28] PEÑA A, GRYNING S E, HASAGER C B. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain[J]. Theoretical and applied climatology, 2010, 100(3): 325-335.
[29] SMITH K.WindPACT turbine design scaling studies technical area 2: turbine, rotor and blade logistics[R]. Office of Scientific & Technical Information Technical Reports, 2001.
[30] 李德顺, 胡渊, 李仁年, 等. 强湍流相干结构对偏航风力机叶根载荷的影响[J]. 农业工程学报, 2020, 36(20): 102-109.
LI D S, HU Y, LI R N, et al.Effects of strong turbulence structure coherent on load of blade root in a yaw wind turbine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 102-109.
[31] SPRAGUE M A, JONKMAN J M, JONKMAN B.FAST modular framework for wind turbine simulation: new algorithms and numerical examples[C]//33rd Wind Energy Symposium. Kissimmee, Florida, USA, 2015: 1461.
[32] STULL R B.Meteorology for scientists and engineers[M].London: Cengage learning EMEA, 2000.
[33] ABKAR M, PORTÉ-AGEL F.The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms[J]. Energies, 2013, 6(5): 2338-2361.
[34] ABKAR M, SHARIFI A, PORTÉ-AGEL F.Wake flow in a wind farm during a diurnal cycle[J]. Journal of turbulence, 2016, 17(4): 420-441.
[35] ENGLBERGER A, DÖRNBRACK A. A numerically efficient parametrization of turbulent wind-turbine flows for different thermal stratifications[J]. Boundary-layer meteorology, 2018, 169(3): 505-536.
[36] HAN X X, LIU D Y, XU C, et al.Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain[J]. Renewable energy, 2018, 126: 640-651.
基金
国家自然科学基金(52276197; 11902131); 甘肃省重点研发计划(23YFGA0069)