在风能资源较好的高纬度和高海拔地区,风电机组常常面临结冰问题。为研发高效的防除冰技术,有必要对风力机叶片表面结冰分布特征进行研究。该文借助回流式结冰风洞试验系统,开展了不同温度、翼型和材料条件下叶片表面结冰试验研究,并提出叶片表面结冰分布特征的评价方法。试验结果表明,翼型几何特征对叶片表面结冰分布影响较大;叶片材料对结冰分布的影响受环境温度影响较大。
Abstract
Ice oftenaccumulates on the surface of wind turbine blades in high latitude and high-eleration areas uith abundant, where wind energy resources . Ice alters the airfoil’s shape, compromises its aerodynamic performance, reduces the wind turbine’s output power, and can even lead to safety accidents. In order to develop efficient anti-icing and de-icing technologies, it is crucial to study the ice distribution characteristics on wind turbine blade surfaces. In this paper, icing experimental research was conducted on blades under different ambient temperatures, airfoils, and materials using the icing wind tunnel experimental system. Evaluation methods for the distribution characteristics of icing on the blade surface are proposed. The test results indicate that the airfoil’s geometric characteristics significantly affect the icing distribution on the blade surface, while the influence of blade material on icing distribution is significantly influenced by ambient temperature.
关键词
风力机 /
结冰 /
翼型 /
材料 /
叶片
Key words
wind turbines /
ice /
airfoils /
materials /
blades
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杜静宇, 胡良权, 任鑫, 等. NREL 5 MW风力机叶片外部翼型结冰模拟[J]. 太阳能学报, 2023, 44(12): 298-305.
DU J Y, HU L Q, REN X, et al.Icing simulation of airfoil of nrel 5 MW wind turbine blade[J]. Acta energiae solaris sinica, 2023, 44(12): 298-305.
[2] 李伟, 文飞, 陈光荣, 等. 风电机组叶片结冰的光纤感知及厚度分布估计[J]. 太阳能学报, 2023, 44(3): 77-83.
LI W, WEN F, CHEN G R, et al.Optical fiber sensing and thickness distribution estimation of icing state on wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(3): 77-83.
[3] XU Z, ZHANG T, LI X J, et al.Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine[J]. Renewable energy, 2023, 217: 119135.
[4] ROBERGE P, LEMAY J, RUEL J, et al.Understanding ice accretion on wind turbines with field data[J]. Cold regions science and technology, 2023, 210: 103853.
[5] SHEN H, LI Y, GUO W F, et al.Experimental research on adhesion strength of ice accretion on leading edge of symmetric airfoil[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2023, 40(2): 230-238.
[6] 王绍龙. 水平轴风力机叶片结冰分布数值模拟与冰风洞试验研究[D]. 哈尔滨: 东北农业大学, 2017.
WANG S L.Numerical simulation and icing wind tunnel test study on icing distribution on blade of horizontal axis wind turbine[D]. Harbin: Northeast Agricultural University, 2017.
[7] GUO W F, SHEN H, LI Y, et al.Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine[J]. Renewable energy, 2021, 179: 116-132.
[8] JIN J Y, VIRK M S.Study of ice accretion and icing effects on aerodynamic characteristics of DU96 wind turbine blade profile[J]. Cold regions science and technology, 2019, 160: 119-127.
[9] GAO L Y, LIU Y, HU H.An experimental investigation of dynamic ice accretion process on a wind turbine airfoil model considering various icing conditions[J]. International journal of heat and mass transfer, 2019, 133: 930-939.
[10] GAO L Y, LIU Y, HU H.An experimental investigation on the dynamic glaze ice accretion process over a wind turbine airfoil surface[J]. International journal of heat and mass transfer, 2020, 149: 119120.
[11] CHUANG Z J, LI C Z, LIU S W, et al.Numerical analysis of blade icing influence on the dynamic response of an integrated offshore wind turbine[J]. Ocean engineering, 2022, 257: 111593.
[12] CHEN T K, CONG Q, SUN C B, et al.Influence of substrate initial temperature on adhesion strength of ice on aluminum alloy[J]. Cold regions science and technology, 2018, 148: 142-147.
[13] MISHNAEVSKY L, BRANNER K, PETERSEN H, et al.Materials for wind turbine blades: an overview[J]. Materials, 2017, 10(11): 1285.
[14] HOMOLA M C, VIRK M S, WALLENIUS T, et al.Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades[J]. Journal of wind engineering and industrial aerodynamics, 2010, 98(12): 724-729.
[15] IBRAHIM G M, POPE K, MUZYCHKA Y S.Effects of blade design on ice accretion for horizontal axis wind turbines[J]. Journal of wind engineering and industrial aerodynamics, 2018, 173: 39-52.
[16] 陈晓燕, 石玉美, 汪荣顺. 玻璃钢低温下导热及接触热阻的实验研究[J]. 低温与超导, 2006, 34(6): 414-416, 477.
CHEN X Y, SHI Y M, WANG R S.Experiment investigation on the thermal conductivity and contact resistance of glass-fiber reinforced plastic[J]. Cryogenics and superconductivity, 2006, 34(6): 414-416, 477.
基金
国家自然科学基金(52376170; 51976029)