漂浮式风电物理模型试验是验证数值仿真准确性的重要手段,该文以大型漂浮式风电机组为基础,开展漂浮式风电机组水池模型试验,进行不同风浪流工况下系统动态特性的测量,包括平台六自由度运动、加速度以及锚链张力等,对典型工况的测试与仿真结果进行对比分析。结果表明,基于三叶片方案的缩尺模型动力响应整体规律与仿真结果一致性较好,验证了数值一体化仿真结果的可靠性和准确性。
Abstract
The physical model testing of the floating wind turbine is an important method for verifying the accuracy of numerical simulations. Based on a large floating wind turbine, this study conducted a floating wind turbine pool model test and measured the dynamic characteristics of the system under different wind, wave and current conditions, including platform with six degrees of freedom motion, acceleration, and anchor chain tension. The test and simulation results under typical working conditions were compared and analyzed. The results show that the overall dynamic response of the scaled model based on the three blade design is consistent with the simulation results, which verifies the reliability and accuracy of the numerical simulation results.
关键词
海上风电机组 /
半潜式平台 /
数值分析 /
模型试验 /
动力响应
Key words
offshore wind turbines /
semi-submersible platforms /
numerical analysis /
model testing /
dynamic response
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家发改委. 可再生能源中长期发展规范(2004—2022)[R].
National Development and Reform Commission. Specification for medium and long term development of renewable energy(2004—2022)[R].
[2] 李昌, 王渊博, 蒋明真, 等. 不同风况下半潜漂浮式风力机动力学响应分析[J]. 太阳能学报, 2023, 44(4): 85-91.
LI C, WANG Y B, JIANG M Z, et al.Dynamic response analysis of semi-submersible floating wind turbine under different wind conditions[J]. Acta energiae solaris sinica, 2023, 44(4): 85-91.
[3] 何鸿圣, 李春, 王博, 等. 2种海上风力机漂浮式风电场平台动态响应对比[J]. 太阳能学报, 2023, 44(4): 1-8.
HE H S, LI C, WANG B, et al.Comparison of dynamic response of two floating wind farm platforms for offshore wind turbines[J]. Acta energiae solaris sinica, 2023, 44(4): 1-8.
[4] IEC 61400-1, Wind turbines-Part1: design requirements (third edition)[S].
[5] NIELSEN F G, HANSON T D, SKAARE B.Integrated dynamic analysis of floating offshore wind turbines[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany, 2008: 671-679.
[6] SAUDER T, CHABAUD V, THYS M, et al.Real-time hybrid model testing of a braceless semi-submersible wind turbine: part I: the hybrid approach[C]//ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, Republic of Korea, 2016.
[7] CHEN J H, HU Z Q, WAN D C, et al.Comparisons of the dynamical characteristics of a semi-submersible floating offshore wind turbine based on two different blade concepts[J]. Ocean engineering, 2018, 153: 305-318.
[8] BAYATI I, FACCHINETTI A, FONTANELLA A, et al.6-DoF hydrodynamic modelling for wind tunnel hybrid/HIL tests of FOWT: the real-time challenge[C]//ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain, 2018.
[9] HSU W T, THIAGARAJAN K P, MACNICOLL M, et al.Prediction of extreme tensions in mooring lines of a floating offshore wind turbine in a 100-year storm[C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. Newfoundland, Canada,2015.
[10] 李辉, 侯承宇, 钱权, 等. 浮式风机水池模型试验与仿真对比分析[J]. 新能源进展, 2022, 10(6): 565-572.
LI H, HOU C Y, QIAN Q, et al.Comparation analysis of basin model test and simulation for floating wind turbine[J]. Advances in new and renewable energy, 2022, 10(6): 565-572.
[11] HALL M, MORENO J, THIAGARAJAN K.Performance specifications for real-time hybrid testing of 1: 50-scale floating wind turbine models[C]//Volume 9B: Ocean Renewable Energy. San Francisco, California, USA, 2014.
[12] 李荣富, 方龙, 宁巧珍, 等. 半潜式与固定式海上风力机气动性能水池模型试验对比研究[J]. 可再生能源, 2022, 40(7): 914-920.
LI R F, FANG L, NING Q Z, et al.A comparative experimental study on floating and fixed bottom offshore wind turbines[J]. Renewable energy resources, 2022, 40(7): 914-920.