基于自注意力机制和CNN融合的燃料电池故障诊断技术

施永, 黄宁, 谢缔, 姚继刚, 汪亮亮

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 53-61.

PDF(2730 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2730 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 53-61. DOI: 10.19912/j.0254-0096.tynxb.2024-0149

基于自注意力机制和CNN融合的燃料电池故障诊断技术

  • 施永1, 黄宁1, 谢缔2, 姚继刚2, 汪亮亮2
作者信息 +

FUEL CELL FAULT DIAGNOSIS TECHNIQUE BASED ON SELF-ATTENTION MECHANISM AND CNN FUSION

  • Shi Yong1, Huang Ning1, Xie Di2, Yao Jigang2, Wang Liangliang2
Author information +
文章历史 +

摘要

该文提出一种基于自注意力机制和卷积神经网络融合的燃料电池故障诊断技术,利用卷积神经网络对故障特征进行提取,通过自注意力机制自适应调节分类网络模型对关键特征的学习权重,减少特征冗余对分类准确性的影响,可显著提高燃料电池故障诊断的精度。经验证,该方法在水淹和膜干的故障诊断中准确率达到99.75%。

Abstract

In this paper, a fuel cell fault diagnosis technique is proposed based on the fusion of the self-attention mechanism and convolutional neural network,which uses a convolutional neural network to extract the fault features, and adaptively adjusts the learning weights for key features in the classification network model through the self-attention mechanism, to reduce the influence of feature redundancy on the classification accuracy. The method has been verified to achieve 99.75% accuracy in fault diagnosis for water flooding and membrane drying.

关键词

质子交换膜燃料电池 / 故障诊断 / 卷积神经网络 / 自注意力机制

Key words

proton exchange membrane fuel cells (PEMFC) / fault diagnosis / convolutional neural networks / self-attention mechanism

引用本文

导出引用
施永, 黄宁, 谢缔, 姚继刚, 汪亮亮. 基于自注意力机制和CNN融合的燃料电池故障诊断技术[J]. 太阳能学报. 2025, 46(5): 53-61 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0149
Shi Yong, Huang Ning, Xie Di, Yao Jigang, Wang Liangliang. FUEL CELL FAULT DIAGNOSIS TECHNIQUE BASED ON SELF-ATTENTION MECHANISM AND CNN FUSION[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 53-61 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0149
中图分类号: TM911.4   

参考文献

[1] Energy Department Hydrogen Program Plan[EB/OL]. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/hydrogen-program-plan-2020.pdf?Status=Master
[2] 陈维荣, 刘嘉蔚, 李奇, 等. 质子交换膜燃料电池故障诊断方法综述及展望[J]. 中国电机工程学报, 2017, 37(16): 4712-4721.
CHEN W R, LIU J W, LI Q, et al.Review and prospect of fault diagnosis methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2017, 37(16): 4712-4721.
[3] ESCOBET T, FEROLDI D, DE LIRA S, et al.Model-based fault diagnosis in PEM fuel cell systems[J]. Journal of power sources, 2009, 192(1): 216-223.
[4] 周苏, 任宏伟, 裴冯来. 基于诊断用COMSOL模型的PEMFC故障诊断方法研究[J]. 化学工业与工程, 2015, 32(4): 56-62.
ZHOU S, REN H W, PEI F L.Faults diagnosis method study of PEMFC based on a diagnostic COMSOL model[J]. Chemical industry and engineering, 2015, 32(4): 56-62.
[5] 朱静, 赵静欣. 质子交换膜燃料电池系统数字孪生故障诊断模型研究[J]. 控制理论与应用, 2022, 39(3): 527-534.
ZHU J, ZHAO J X.Digital twin fault diagnosis model analysis of proton exchange membrane fuel cell systems[J]. Control theory & applications, 2022, 39(3): 527-534.
[6] DE LIRA S, PUIG V, QUEVEDO J.LPV model-based fault diagnosis using relative fault sensitivity signature approach in a PEM fuel cell[J]. IFAC proceedings volumes, 2009, 42(8): 528-533.
[7] 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993.
YONG J W, ZHAO Q Q, FENG N L.Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model[J]. CIESC journal, 2022, 73(9): 3983-3993.
[8] ESMAILI Q, NIMVARI M E, JOUYBARI N F, et al.Model based water management diagnosis in polymer electrolyte membrane fuel cell[J]. International journal of hydrogen energy, 2020, 45(31): 15618-15629.
[9] 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9, 16.
LI H, XIAO D Y.Survey on data driven fault diagnosis methods[J]. Control and decision, 2011, 26(1): 1-9, 16.
[10] LI Z L, OUTBIB R, GIURGEA S, et al.Online implementation of SVM based fault diagnosis strategy for PEMFC systems[J]. Applied energy, 2016, 164: 284-293.
[11] XIAO F, CHEN T, ZHANG J W, et al.Water management fault diagnosis for proton-exchange membrane fuel cells based on deep learning methods[J]. International journal of hydrogen energy, 2023, 48(72): 28163-28173.
[12] LIU Z Y, PEI M L, HE Q B, et al.A novel method for polymer electrolyte membrane fuel cell fault diagnosis using 2D data[J]. Journal of power sources, 2021, 482: 228894.
[13] 刘昕宇, 韩莹, 陈维荣, 等. 基于改进SSA-DBN的质子交换膜燃料电池水故障智能分类方法[J]. 电力自动化设备, 2024, 44(4): 18-24.
LIU X Y, HAN Y, CHEN W R, et al.Intelligent classification method of water faults for proton exchange membrane fuel cell based on improved SSA-DBN[J]. Electric power automation equipment, 2024, 44(4): 18-24.
[14] 贺飞, 张雪霞, 陈维荣. 基于P-L双重特征提取的PEMFC系统故障诊断方法[J]. 太阳能学报, 2024, 45(1): 492-499.
HE F, ZHANG X X, CHEN W R.Fault diagnosis method of PEMFC system based on P-L dual feature extraction[J]. Acta energiae solaris sinica, 2024, 45(1): 492-499.
[15] DU R B, WEI X Z, WANG X Y, et al.A fault diagnosis model for proton exchange membrane fuel cell based on impedance identification with differential evolution algorithm[J]. International journal of hydrogen energy, 2021, 46(78): 38795-38808.
[16] 刘相万, 杨扬, 朱文超, 等. 基于二阶RQ-RLC模型的质子交换膜燃料电池水管理故障诊断[J]. 中国电机工程学报, 2022, 42(21): 7893-7905.
LIU X W, YANG Y, ZHU W C, et al.Second-order RQ-RLC model-based fault diagnosis for water management in proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2022, 42(21): 7893-7905.
[17] 万伟东. 基于EIS和数据驱动的PEMFC电堆健康状态监测方法研究[D]. 大连: 大连理工大学, 2022.
WAN W D.Research on health status monitoring method for PEMFC stack based on EIS and data-driven[D]. Dalian: Dalian University of Technology, 2022.
[18] 卢华歆. 基于快速电化学阻抗谱测量的在线质子交换膜燃料电池故障诊断[D]. 杭州: 浙江大学, 2020.
LU H X.On-line fault diagnosis for PEM fuel cells based on fast EIS measurement[D]. Hangzhou: Zhejiang University, 2020.
[19] ZHANG H C, LV J F, KUANG J Y, et al.Data-driven based PEMFC EIS modeling with nyquist plot[C]//IECON 2022-48th Annual Conference of the IEEE Industrial Electronics Society. Brussels, Belgium, 2022: 1-6.
[20] LYU J F, KUANG J Y, YU Z L, et al.Diagnosis of PEM fuel cell system based on electrochemical impedance spectroscopy and deep learning method[J]. IEEE transactions on industrial electronics, 2024, 71(1): 657-666.
[21] HAN S B, OH H, LEE W Y, et al.On-line EIS measurement for high-power fuel cell systems using Simulink real-time[J]. Energies, 2021, 14(19): 6133.
[22] 黄赵军, 苏建徽, 解宝, 等. 基于模糊C均值聚类和概率神经网络的PEMFC故障诊断方法研究[J]. 太阳能学报, 2024, 45(1): 475-483.
HUANG Z J, SU J H, XIE B, et al.Research on PEMFC fault diagnosis method based on fuzzy C means clustering and probabilistic neural network[J]. Acta energiae solaris sinica, 2024, 45(1): 475-483.
[23] 金致含, 苏建徽, 施永, 等. 基于二进制序列的燃料电池宽频带EIS测试[J]. 太阳能学报, 2022, 43(7): 1-8.
JIN Z H, SU J H, SHI Y, et al.Broadband EIS test of fuel cell based on binary sequences[J]. Acta energiae solaris sinica, 2022, 43(7): 1-8.
[24] 姚鹏. 人工智能技术在交流异步电机故障诊断中的应用[J]. 电机与控制应用, 2022, 49(4): 1-9.
YAO P.Application of artificial intelligence technology in fault diagnosis of AC asynchronous motor[J]. Electric machines & control application, 2022, 49(4): 1-9.
[25] 何雅静, 汪登. 人工神经网络在光伏中的应用综述[J]. 太阳能, 2019(1): 17-20.
HE Y J, WANG D.Review on the application of neural networks in PV[J]. Solar energy, 2019(1): 17-20.
[26] 林凡勤, 李明明, 郭红. 变压器故障诊断技术综述[J]. 计算机与现代化, 2022(3): 116-126.
LIN F Q, LI M M, GUO H.Review on fault diagnosis technology of transformer[J]. Computer and modernization, 2022(3): 116-126.
[27] ZHU L, CHEN J.Prognostics of PEM fuel cells based on Gaussian process state space models[J]. Energy, 2018, 149: 63-73.
[28] BENMOUNA A, BECHERIF M, DEPERNET D, et al.Fault diagnosis methods for proton exchange membrane fuel cell system[J]. International journal of hydrogen energy, 2017, 42(2): 1534-1543.
[29] 马睿, 党翰斌, 张钰奇, 等. 质子交换膜燃料电池系统故障机理分析及诊断方法研究综述[J]. 中国电机工程学报, 2024, 44(1): 407-426.
MA R, DANG H B, ZHANG Y Q, et al.A review on failure mechanism analysis and diagnosis for proton exchange membrane fuel cell systems[J]. Proceedings of the CSEE, 2024, 44(1): 407-426.
[30] 张雪霞, 蒋宇, 孙腾飞, 等. 质子交换膜燃料电池水淹和膜干故障诊断研究综述[J]. 西南交通大学学报, 2020, 55(4): 828-838, 864.
ZHANG X X, JIANG Y, SUN T F, et al.Review on fault diagnosis for flooding and drying in proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 828-838, 864.
[31] SHI Y, HE W, XIE B, et al.PEMFC fault diagnosis based on an equivalent circuit and OS-ELM framework[J]. IEEE transactions on industry applications, 2024, 60(1): 1277-1287.

基金

安徽省自然科学基金(2308085ME180); 广东恒翼能科技股份有限公司合作项目(W2023JSFW0479)

PDF(2730 KB)

Accesses

Citation

Detail

段落导航
相关文章

/