过渡族金属及其化合物碱性电解水析氧催化剂研究进展

王见, 刘太楷, 丁茯, 刘红消, 邓春明, 廖汉林

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 62-72.

PDF(1684 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1684 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 62-72. DOI: 10.19912/j.0254-0096.tynxb.2024-0152

过渡族金属及其化合物碱性电解水析氧催化剂研究进展

  • 王见1,2, 刘太楷2, 丁茯1, 刘红消1, 邓春明2, 廖汉林3
作者信息 +

PROGRESS IN OXYGEN EVOLUTION REACTION CATALYSTS OF TRANSITION METALS AND THEIR COMPOUNDS OXYGEN EVOLUTION CATALYSTS FOR ALKALINE WATER ELECTROLYSIS

  • Wang Jian1,2, Liu Taikai2, Ding Fu1, Liu Hongxiao1, Deng Chunming2, Liao Hanlin3
Author information +
文章历史 +

摘要

该文主要从电解水制氢技术的发展现状、电解水析氧机理以及析氧催化材料等方面进行探讨和分析,通过过渡族金属元素催化材料OER性能的分析,对催化剂设计和制备中存在的不足进行深入地探讨,为低成本、高性能的催化剂材料开发提供依据。

Abstract

This work mainly discussed and analyzed the status quo of water electrolysis, the OER mechanism and the development of OER catalysts. By analyzing the OER performance of transition metals, the defects and problems during the catalyst design and production were discussed in detail to help the development of low-cost and high-performance OER catalysts.

关键词

碱性电解水 / 析氧反应 / OER机理 / OER催化剂 / 过渡族金属

Key words

alkaline water electrolysis / oxygen evolution reaction / OER mechanism / OER catalyst / transition metals

引用本文

导出引用
王见, 刘太楷, 丁茯, 刘红消, 邓春明, 廖汉林. 过渡族金属及其化合物碱性电解水析氧催化剂研究进展[J]. 太阳能学报. 2025, 46(5): 62-72 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0152
Wang Jian, Liu Taikai, Ding Fu, Liu Hongxiao, Deng Chunming, Liao Hanlin. PROGRESS IN OXYGEN EVOLUTION REACTION CATALYSTS OF TRANSITION METALS AND THEIR COMPOUNDS OXYGEN EVOLUTION CATALYSTS FOR ALKALINE WATER ELECTROLYSIS[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 62-72 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0152
中图分类号: TK91   

参考文献

[1] CHU S, MAJUMDAR A.Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[2] ROGER I, SHIPMAN M A, SYMES M D.Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature reviews chemistry, 2017, 1: 3.
[3] BRAUNS J, TUREK T.Alkaline water electrolysis powered by renewable energy: a review[J]. Processes, 2020, 8(2): 248.
[4] DALY K M, JIMENEZ-VILLEGAS S, GODWIN B, et al.A comparison of photodeposited RuOx for alkaline water electrolysis[J]. ACS applied energy materials, 2023, 6(3): 1449-1458.
[5] ALBORNOZ M, RIVERA M, WHEELER P, et al.High pulsed voltage alkaline electrolysis for water splitting[J]. Sensors, 2023, 23(8): 3820.
[6] YUAN M, YAN T, LIU Z K, et al.Highly efficient alkaline water electrolysis using alkanolamine-functionalized zirconia-blended separators[J]. ACS sustainable chemistry & engineering, 2023, 11(10): 4269-4278.
[7] THISSEN N, HOFFMANN J, TIGGES S, et al.Industrially relevant conditions in lab-scale analysis for alkaline water electrolysis[J]. ChemElectroChem, 2024, 11(1): e202300432.
[8] ZHIANI M, TAGHIABADI M M, BAGHERABADI M H.Optimization of Ni-Mo-coated stainless steel as a high-performance cathode in alkaline water electrolysis[J]. Electrocatalysis, 2023, 14(3): 473-483.
[9] 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217.
ZHANG C J, CAI J, ZHANG Y K, et al.Simulation of high temperature solid oxide water electrolysis for hydrogen production based on thermodynamic equilibrium[J]. Acta energiae solaris sinica, 2021, 42(9): 210-217.
[10] QU S G, CHEN G H, DUAN J H, et al.Computational fluid dynamics study on the anode feed solid polymer electrolyte water electrolysis[J]. Korean journal of chemical engineering, 2017, 34(6): 1630-1637.
[11] TANG C M, WANG N, ZHU R J, et al.Design of anode functional layers for protonic solid oxide electrolysis cells[J]. Journal of materials chemistry A, 2022, 10(29): 15719-15730.
[12] 赫亚庆, 张新燕, 王维庆, 等. 基于新能源消纳的高温电解制氢系统建模与控制方法研究[J]. 太阳能学报, 2024, 45(1): 484-491.
HE Y Q, ZHANG X Y, WANG W Q, et al.Research on modeling and control method of high-temperature electrolytic hydrogen production system based on new energy absorption[J]. Acta energiae solaris sinica, 2024, 45(1): 484-491.
[13] TORIUMI H, JEONG S, KITANO S, et al.Enhanced performance of protonic solid oxide steam electrolysis cell of Zr-rich side BaZr0.6Ce0.2Y0.2O3-δ electrolyte with an anode functional layer[J]. ACS omega, 2022, 7(11): 9944-9950.
[14] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[15] 施正荣, 翁楚, 蔡靖雍, 等. 基于PV/T的质子交换膜电解制氢系统动态性能研究[J]. 太阳能学报, 2023, 44(8): 164-170.
SHI Z R, WENG C, CAI J Y, et al.Study on dynamic performance of PV/T based on proton exchange membrane water electrolysis system[J]. Acta energiae solaris sinica, 2023, 44(8): 164-170.
[16] WU Q N, WANG Y N, ZHANG K X, et al.Advances and status of anode catalysts for proton exchange membrane water electrolysis technology[J]. Materials chemistry frontiers, 2023, 7(6): 1025-1045.
[17] BONANNO M, MÜLLER K, BENSMANN B, et al. Evaluation of the efficiency of an elevated temperature proton exchange membrane water electrolysis system[J]. Journal of the Electrochemical Society, 2021, 168(9): 094504.
[18] NGOC HUYNH T B, SONG J, BAE H E, et al. Ir-Ru electrocatalysts embedded in N-doped carbon matrix for proton exchange membrane water electrolysis[J]. Advanced functional materials, 2023, 33(28): 2301999.
[19] LIU Y H, XU M, ZHAO Y L, et al.Multi-doped ceria-based composite as a promising low-temperature electrolyte with enhanced ionic conductivity for steam electrolysis[J]. Molecular systems design & engineering, 2023, 8(8): 992-1003.
[20] GAO G L, ZHU G, CHEN X L, et al.Optimizing Pt-based alloy electrocatalysts for improved hydrogen evolution performance in alkaline electrolytes: a comprehensive review[J]. ACS nano, 2023, 17(21): 20804-20824.
[21] DENG T, HUANG H H, FAN L, et al.Porous transport layers with TiC-coated microporous layers for proton exchange membrane water electrolysis[J]. ACS sustainable chemistry & engineering, 2023, 11(48): 17075-17085.
[22] BANG H T, YEO K R, CHOI K J, et al.Ternary Ni-Mo-P catalysts for enhanced activity and durability in proton exchange membrane water electrolysis[J]. International journal of energy research, 2022, 46(9): 13023-13034.
[23] YUN S, LEE J, CHO H, et al.Oxy-fuel combustion-based blue hydrogen production with the integration of water electrolysis[J]. Energy conversion and management, 2023, 291: 117275.
[24] CHEN C H, WU D Y, LI Z, et al.Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution[J]. Advanced energy materials, 2019, 9(20): 1803913.
[25] CHEN L, DONG X L, WANG Y G, et al.Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide[J]. Nature communications, 2016, 7: 11741.
[26] VILLAGRA A, MILLET P.An analysis of PEM water electrolysis cells operating at elevated current densities[J]. International journal of hydrogen energy, 2019, 44(20): 9708-9717.
[27] CHATENET M, POLLET B G, DEKEL D R, et al.Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments[J]. Chemical Society Reviews, 2022, 51(11): 4583-4762.
[28] ZHANG H X, JIANG H, HU Y J, et al.Tailorable surface sulfur chemistry of mesoporous Ni3S2 particles for efficient oxygen evolution[J]. Journal of materials chemistry A, 2019, 7(13): 7548-7552.
[29] MAN I C, SU H Y, CALLE-VALLEJO F, et al.Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
[30] MARINI S, SALVI P, NELLI P, et al.Advanced alkaline water electrolysis[J]. Electrochimica acta, 2012, 82: 384-391.
[31] SUEN N T, HUNG S F, QUAN Q, et al.Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
[32] SONG F, BAI L C, MOYSIADOU A, et al.Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance[J]. Journal of the American Chemical Society, 2018, 140(25): 7748-7759.
[33] MATTIOLI G, GIANNOZZI P, BONAPASTA A A, et al.Reaction pathways for oxygen evolution promoted by cobalt catalyst[J]. Journal of the American Chemical Society, 2013, 135(41): 15353-15363.
[34] ROSSMEISL J, QU Z W, ZHU H, et al.Electrolysis of water on oxide surfaces[J]. Journal of electroanalytical chemistry, 2007, 607(1/2): 83-89.
[35] FABBRI E, HABEREDER A, WALTAR K, et al.Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catalysis science & technology, 2014, 4(11): 3800-3821.
[36] CAI Z Y, BU X M, WANG P, et al.Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction[J]. Journal of materials chemistry A, 2019, 7(10): 5069-5089.
[37] DONG S Z, LI Y S, ZHAO Z L, et al.Reparation of porous Ti-Cu alloy by one-step sintering method and application of hydrogen evolution reaction[J]. Journal of electroanalytical chemistry, 2022, 918: 116448.
[38] LIU T T, LI M, BO X J, et al.Designing transition metal alloy nanoparticles embedded hierarchically porous carbon nanosheets as high-efficiency electrocatalysts toward full water splitting[J]. Journal of colloid and interface science, 2019, 537: 280-294.
[39] BEGUM H, AHMED M S, JEON S.δ-MnO2 nanoflowers on sulfonated graphene sheets for stable oxygen reduction and hydrogen evolution reaction[J]. Electrochimica acta, 2019, 296: 235-242.
[40] HA Y, SHI L X, YAN X X, et al.Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork[J]. ACS applied materials & interfaces, 2019, 11(49): 45546-45553.
[41] KÖSE K Ö, AYDıNOL M K. Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis[J]. International journal of energy research, 2022, 46(15): 22078-22088.
[42] MAHESKUMAR V, MIN A, MOON C J, et al.Modulating the electronic structure of Ni/NiO nanocomposite with high-valence Mo doping for energy-saving hydrogen production via boosting urea oxidation kinetics[J]. Small structures, 2023, 4(12): 2300212.
[43] KHAN N A, AHMAD I, RASHID N, et al.Effective CuO/CuS heterostructures catalyst for OER performances[J]. International journal of hydrogen energy, 2023, 48(80): 31142-31151.
[44] BIANCHETTI E, PERILLI D, DI VALENTIN C.Improving the oxygen evolution reaction on Fe3O4(001) with single-atom catalysts[J]. ACS catalysis, 2023, 13(7): 4811-4823.
[45] BORETTI A.A perspective on the production of hydrogen from solar-driven thermal decomposition of methane[J]. International journal of hydrogen energy, 2021, 46(69): 34509-34514.
[46] BHATTI A L, TAHIRA A, GRADONE A, et al.Nanostructured Co3O4 electrocatalyst for OER: the role of organic polyelectrolytes as soft templates[J]. Electrochimica acta, 2021, 398: 139338.
[47] VINCENT I, CHOI B, NAKOJI M, et al.Pulsed current water splitting electrochemical cycle for hydrogen production[J]. International journal of hydrogen energy, 2018, 43(22): 10240-10248.
[48] SUN S N, SUN Y M, ZHOU Y, et al.Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides[J]. Angewandte Chemie international edition, 2019, 58(18): 6042-6047.
[49] CUI M Y, DING X Y, HUANG X C, et al.Ni3+-induced hole states enhance the oxygen evolution reaction activity of NixCo3-xO4 electrocatalysts[J]. Chemistry of materials, 2019, 31(18): 7618-7625.
[50] WANG X F, SUN P F, LU H L, et al.Aluminum-tailored energy level and morphology of Co3-xAlxO4 porous nanosheets toward highly efficient electrocatalysts for water oxidation[J]. Small, 2019, 15(11): 1804886.
[51] SUN Y M, SUN S N, YANG H T, et al.Spin-related electron transfer and orbital interactions in oxygen electrocatalysis[J]. Advanced materials, 2020, 32(39): 2003297.
[52] REN X, WU T Z, SUN Y M, et al.Spin-polarized oxygen evolution reaction under magnetic field[J]. Nature communications, 2021, 12(1): 2608.
[53] WU T Z, SUN S N, SONG J J, et al.Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation[J]. Nature catalysis, 2019, 2(9): 763-772.
[54] BI S H, GENG Z, WANG Y W, et al.Multi-stage porous nickel-iron oxide electrode for high current alkaline water electrolysis[J]. Advanced functional materials, 2023, 33(31): 2214792.
[55] KIBSGAARD J, TSAI C, CHAN K R, et al.Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends[J]. Energy & environmental science, 2015, 8(10): 3022-3029.
[56] HOANG T T H, GEWIRTH A A. High activity oxygen evolution reaction catalysts from additive-controlled electrodeposited Ni and NiFe films[J]. ACS catalysis, 2016, 6(2): 1159-1164.
[57] XU L, ZHANG F T, CHEN J H, et al.Amorphous NiFe nanotube arrays bifunctional electrocatalysts for efficient electrochemical overall water splitting[J]. ACS applied energy materials, 2018, 1(3): 1210-1217.
[58] WANG M, ZHANG L, HE Y J, et al.Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting[J]. Journal of materials chemistry A, 2021, 9(9): 5320-5363.
[59] WANG J S, ZHANG Z F, SONG H R, et al.Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution[J]. Advanced functional materials, 2021, 31(9): 2008578.
[60] FEI B, CHEN Z L, LIU J X, et al.Ultrathinning nickel sulfide with modulated electron density for efficient water splitting[J]. Advanced energy materials, 2020, 10(41): 2001963.
[61] ZHUO K, GUO H J, WU J, et al.Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting[J]. Advanced functional materials, 2019, 29(9): 1807031.
[62] CHEN P Z, ZHOU T P, ZHANG M X, et al.3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting[J]. Advanced materials, 2017, 29(30): 1701584.
[63] JOO J, KIM T, LEE J, et al.Morphology-controlled metal sulfides and phosphides for electrochemical water splitting[J]. Advanced materials, 2019, 31(14): 1806682.
[64] PEI Y, CHENG Y, CHEN J Y, et al.Recent developments of transition metal phosphides as catalysts in the energy conversion field[J]. Journal of materials chemistry A, 2018, 6(46): 23220-23243.
[65] LI Y, LI R P, WANG D, et al.A review: Target-oriented transition metal phosphide design and synthesis for water splitting[J]. International journal of hydrogen energy, 2021, 46(7): 5131-5149.
[66] ZHANG G, WANG G C, LIU Y, et al.Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting[J]. Journal of the American chemical society, 2016, 138(44): 14686-14693.
[67] DING S Q, CAO D F, LIU D B, et al.Modulating electronic structure of cobalt phosphide precatalysts via dual-metal incorporation for highly efficient overall water splitting[J]. ACS applied energy materials, 2019, 2(11): 8022-8030.
[68] ZHANG B W, LUI Y H, NI H W, et al.Bimetallic (FexNi1-x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media[J]. Nano energy, 2017, 38: 553-560.
[69] FU Q, WU T, FU G, et al.Skutterudite-type ternary Co1-xNixP3 nanoneedle array electrocatalysts for enhanced hydrogen and oxygen evolution[J]. ACS energy letters, 2018, 3(7): 1744-1752.
[70] ZHOU C M, MU J S, QI Y F, et al.Iron-substituted Co-Ni phosphides immobilized on Ni foam as efficient self-supported 3D hierarchical electrocatalysts for oxygen evolution reaction[J]. International journal of hydrogen energy, 2019, 44(16): 8156-8165.

基金

广东省科学院发展专项资金(2022GDASZH-2022010203-003); 广东省科学院建设国内一流研究机构项目(2019GDASYL-0102007)

PDF(1684 KB)

Accesses

Citation

Detail

段落导航
相关文章

/