不同黏性土循环弱化特征及海上风力机桩基累积位移规律分析

邱子宁, 许成顺, 杨钰荣, 刘开源

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 619-628.

PDF(5320 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5320 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 619-628. DOI: 10.19912/j.0254-0096.tynxb.2024-0156

不同黏性土循环弱化特征及海上风力机桩基累积位移规律分析

  • 邱子宁1, 许成顺1, 杨钰荣1, 刘开源2
作者信息 +

ANALYSIS OF CYCLIC WEAKENING CHARACTERISTICS OF COHESIVE SOIL AND CUMULATIVE DISPLACEMENT OF SINGLE PILE FOUNDATION OF OFFSHORE WIND TURBINES

  • Qiu Zining1, Xu Chengshun1, Yang Yurong1, Liu Kaiyuan2
Author information +
文章历史 +

摘要

通过开展室内饱和黏土竖向-扭转双向耦合剪切试验,提出考虑主应力轴连续旋转的黏土刚度软化模型并嵌入Flac3D三维桩-土相互作用数值模型,分析粉土、粉质黏土和黏土这3类场地中海上风电大直径桩基的循环累积变形规律。结果表明,3类场地的泥面位移累积率均随循环次数的增加先增加后趋于稳定;桩基侧向累积位移与场地土体的塑性指数密切相关,塑性指数越大,割线模量衰减越慢,桩身累积位移发展越慢。

Abstract

Offshore wind turbines are subjected to cyclic loads such as wind and waves over long periods during operation. The soil surrouding the piles is prone to stiffness degredation under the cyclic loads, leading to an increase in the cumulative displacement of the pile foundation, which endangers the normal operation of the wind turbine system. By carrying out indoor vertical-torsional two-way coupled shear tests on saturated clay, a clay stiffness softening model considering the continuous rotation of the principal stress axis was proposed and embedded into the Flac3D three-dimensional pile-soil interaction numerical model to analyze three types of silts:silty clay and clay. Cyclic cumulative deformation law of large-diameter pile foundations for offshore wind turbines in the Mediterranean Sea. The research results show that the mud surface displacement accumulation rate of the three types of sites first increases and then stablizes as the number of cycles increases; the lateral cumulative displacement of the pile foundation is closely related to the plasticity index of the site soil. The greater the plasticity index, the secant line The modulus decays slowly, and the cumulative displacement of the pile body develops slowly.

关键词

海上风力机 / 单桩基础 / 累积变形 / 黏土软化模型 / 主应力轴连续旋转

Key words

offshore wind turbines / pile foundations / deformation / clay softening model / continuous rotation of the principal stress axis

引用本文

导出引用
邱子宁, 许成顺, 杨钰荣, 刘开源. 不同黏性土循环弱化特征及海上风力机桩基累积位移规律分析[J]. 太阳能学报. 2025, 46(5): 619-628 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0156
Qiu Zining, Xu Chengshun, Yang Yurong, Liu Kaiyuan. ANALYSIS OF CYCLIC WEAKENING CHARACTERISTICS OF COHESIVE SOIL AND CUMULATIVE DISPLACEMENT OF SINGLE PILE FOUNDATION OF OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 619-628 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0156
中图分类号: TU47   

参考文献

[1] 杜剑强, 仲俊成, 李斌, 等. 中国海上风电发展现状及展望[J]. 油气与新能源, 2023, 35(3): 1-7.
DU J Q, ZHONG J C, LI B, et al.Current situation and outlook of China’s offshore wind power[J]. Petroleum and new energy, 2023, 35(3): 1-7.
[2] 孙绪廷, 杨丹良, 马纯杰. 海上风电基础研究现状与可持续发展分析[J]. 山西建筑, 2019, 45(18): 64-65.
SUN X T, YANG D L, MA C J.The research status of offshorewind power foundation and the sustainable development analysis[J]. Shanxi architecture, 2019, 45(18): 64-65.
[3] 李志昊, 岳敏楠, 闫阳天, 等. 不同海况下近海超大型风力机动力学响应及结构损伤分析[J]. 太阳能学报, 2022, 43(7): 366-374.
LI Z H, YUE M N, YAN Y T, et al.Analysis of dynamic response and structural damage of offshore super large wind turbine under different sea conditions[J]. Acta energiae solaris sinica, 2022, 43(7): 366-374.
[4] API RP 2A-1980, Recommended practice for planning, designing, and constructing fixed offshore platforms[S].
[5] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807-1815.
ZHU B, XIONG G, LIU J C, et al.Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese journal of geotechnical engineering, 2013, 35(10): 1807-1815.
[6] 胡安峰, 南博文, 陈缘, 等. 基于砂土刚度衰减模型的修正p-y曲线法[J]. 上海交通大学学报, 2020, 54(12): 1316-1323.
HU A F, NAN B W, CHEN Y, et al.Modified p-y curves method based on degradation stiffness model of sand[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1316-1323.
[7] 王卫, 闫俊义, 刘建平. 基于海上风电试桩数据的大直径桩p-y模型研究[J]. 岩土工程学报, 2021, 43(6): 1131-1138.
WANG W, YAN J Y, LIU J P.Study on p-y models for large-diameter pile foundation based on in situ tests of offshore wind power[J]. Chinese journal of geotechnical engineering, 2021, 43(6): 1131-1138.
[8] 李卫超, 杨敏, 朱碧堂. 砂土中刚性短桩的p-y模型案例研究[J]. 岩土力学, 2015, 36(10): 2989-2995.
LI W C, YANG M, ZHU B T.Case study of p-y model for short rigid pile in sand[J]. Rock and soil mechanics, 2015, 36(10): 2989-2995.
[9] XIE M, LOPEZ-QUEROL S.Numerical simulations of the monotonic and cyclic behaviour of offshore wind turbine monopile foundations in clayey soils[J]. Journal of marine science and engineering, 2021, 9(9): 1036.
[10] WU T Y, HAN J, CAI Y Q, et al.Relationship between monotonic and cyclic behavior of saturated soft clay in undrained triaxial compression tests[J]. Canadian geotechnical journal, 2021, 58(12): 1812-1824.
[11] BISOI S, HALDAR S.3D modeling of long-term dynamic behavior of monopile-supported offshore wind turbine in clay[J]. International journal of geomechanics, 2019, 19(7): 04019062.
[12] LIU Y, HUANG M S, MA S K.A simplified calculation method for axial cyclic degradation of offshore wind turbine foundations in clay[J]. Marine georesources & geotechnology, 2020, 38(2): 204-213.
[13] ACHMUS M, KUO Y S, ABDEL-RAHMAN K.Behavior of monopile foundations under cyclic lateral load[J]. Computers and geotechnics, 2009, 36(5): 725-735.
[14] 胡安峰, 张光建, 贾玉帅, 等. 刚度衰减模型在大直径桩累积侧向位移分析中的应用[J]. 浙江大学学报(工学版), 2014, 48(4): 721-726.
HU A F,ZHANG G J,JIA Y S, et al.Application of stiffness attenuation model to the cumulative lateral displacement analysis of large diameter piles[J]. Journal of Zhejiang University (engineering science), 2014, 48(4): 721-726.
[15] 胡安峰, 付鹏, 江进华, 等. 软土地基中风机单桩基础累积侧向位移分析[J]. 中南大学学报(自然科学版), 2018, 49(9): 2257-2263.
HU A F, FU P, JIANG J H, et al.Analysis of cumulative lateral displacement of monopile foundations for wind turbines in soft clay[J]. Journal of Central South University (science and technology), 2018, 49(9): 2257-2263.
[16] YANG Y R, SUN Y L, XU C S, et al.Predicting accumulated deformation of offshore large-diameter monopile using hollow cylinder apparatus[J]. Ocean engineering, 2022, 261: 111984.
[17] IDRISS I M, DOBRY R M, DOYLE E H, et al.Behavior of soft clays under earthquake loading conditions[C]//All Days, Houston, Texas, 1976: 54-67.
[18] 周建, 龚晓南, 李剑强. 循环荷载作用下饱和软粘土特性试验研究[J]. 工业建筑, 2000, 30(11): 43-47, 4.
ZHOU J, GONG X N, LI J Q.Experimental study of saturated soft clay under cyclic loading[J]. Industrial construction, 2000, 30(11): 43-47, 4.
[19] LENG J, YE G L, YE B, et al.Laboratory test and empirical model for shear modulus degradation of soft marine clays[J]. Ocean engineering, 2017, 146: 101-114.
[20] 王军, 蔡袁强, 潘林有. 双向激振下饱和软黏土应变软化现象试验研究[J]. 岩土工程学报, 2009, 31(2): 178-185.
WANG J, CAI Y Q, PAN L Y.Degradation of stiffness of soft clay under bidirectional cyclic loading[J]. Chinese journal of geotechnical engineering, 2009, 31(2): 178-185.
[21] 葛君, 陈前, 王瑞良, 等. 不同海域水文环境与风力机疲劳载荷差异性研究[J]. 太阳能学报, 2024, 45(1): 205-209.
GE J, CHEN Q, WANG R L, et al.Research on difference of hydrological environment and wind turbine fatigue load in different sea areas[J]. Acta energiae solaris sinica, 2024, 45(1): 205-209.
[22] WANG L Z, PAN D Z, LING D S.Integral transform analysis of the wave-induced response in seabed and its application[C]//Soil and Rock Behavior and Modeling, Shanghai, China, 2006: 429-436.
[23] 许成顺, 刘晨, 刘海强, 等. 竖向-扭转双向耦合剪切仪功能分析及应用[J]. 北京工业大学学报, 2013, 39(2): 233-238.
XU C S, LIU C,LIU H Q, et al.Function analysis and application of vertical torsional bidirectional coupling shear instrument[J].Journal of Beijing University of Technology, 2013, 39(02): 233-238.
[24] 沈扬, 王保光, 陶明安, 等. 重塑黏土空心圆柱试样制备技术改进及应用[J]. 岩土力学, 2015, 36(S1): 697-701.
SHEN Y, WANG B G, TAO M A, et al.Improvement of preparing technique for hollow cylinder specimen of remolded clay and its application[J]. Rock and soil mechanics, 2015, 36(S1): 697-701.
[25] 许成顺, 高英, 杜修力, 等. 双向耦合剪切条件下饱和砂土动强度特性试验研究[J]. 岩土工程学报, 2014, 36(12): 2335-2340.
XU C S, GAO Y, DU X L, et al.Dynamic strength of saturated sand under bi-directional cyclic loading[J]. Chinese journal of geotechnical engineering, 2014, 36(12): 2335-2340.
[26] WICHTMANN T, ANDERSEN K H, SJURSEN M A, et al.Cyclic tests on high-quality undisturbed block samples of soft marine Norwegian clay[J]. Canadian geotechnical journal, 2013, 50(4): 400-412.
[27] 许成顺, 王馨, 杜修力, 等. 不同黏性土的残余强度及其抗剪强度指标特性研究[J]. 岩土工程学报, 2017, 39(3): 436-443.
XU C S, WANG X, DU X L, et al.Experimental study on residual strength and index of shear strength characteristics of different clay soils[J]. Chinese journal of geotechnical engineering, 2017, 39(3): 436-443.
[28] THIEKEN K, ACHMUS M, LEMKE K.A new static p-y approach for piles with arbitrary dimensions in sand[J].Geotechnik, 2015, 38(4): 267-288.
[29] 董爱民. 风电桩基础水平承载力研究[D]. 武汉: 中国地质大学, 2017.
DONG A M.Study on horizontal bearing capacity of wind power pile foundation[D]. Wuhan: China University of Geosciences, 2017.
[30] 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2013.
CHEN Y M, XU D P.FLAC/FLAC3D fundamentals & engineering examples[M]. China Water & Power Press,2013.
[31] 曹光伟, 丁选明, 张鼎新, 等. 水平循环荷载下软黏土大直径单桩承载性状离心机模型试验研究[J]. 岩土工程学报, 2023, 45(8): 1574-1585.
CAO G W, DING X M, ZHANG D X, et al.Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests[J]. Chinese journal of geotechnical engineering, 2023, 45(8): 1574-1585.
[32] MUHAMMAD A.Analysis and design of monopile foundations for offshore wind-turbine structures[J]. Marine georesources & geotechnology: 2016(6): 503-525
[33] 戴朴修, 刘开富, 谢新宇, 等. 软基中多向受荷大直径单桩桩土相互作用试验研究[J]. 浙江大学学报(工学版), 1-9.
DAI B X, LIU K F, XIE X Y, et al.Experimental study on pile-soil interaction of large-diameter single piles subjected to multi-directional loads in soft soil foundation[J]. Journal of Zhejiang University (engineering science), 1-9.

基金

国家杰出青年科学基金(52225807)

PDF(5320 KB)

Accesses

Citation

Detail

段落导航
相关文章

/