基于双重移相控制的双有源桥DC-DC变换器最小回流功率优化控制

王盼, 朱继赜, 徐虎, 章国光, 袁雷, 徐岸非

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 193-202.

PDF(6939 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6939 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 193-202. DOI: 10.19912/j.0254-0096.tynxb.2024-0162

基于双重移相控制的双有源桥DC-DC变换器最小回流功率优化控制

  • 王盼, 朱继赜, 徐虎, 章国光, 袁雷, 徐岸非
作者信息 +

OPTIMIZATION CONTROL OF MINIMUM BACKFLOW POWER FOR UAL ACTIVE BRIDGE DC-DC CONVERTER BASED ON DUAL PHASE SHIFT CONTROL

  • Wang Pan, Zhu Jize, Xu Hu, Zhang Guoguang, Yuan Lei, Xu Anfei
Author information +
文章历史 +

摘要

为提高双有源桥DC-DC变换器的效率,提出一种基于双重移相控制的最小回流功率优化方案。针对双重移相的两种工作模式,分析推导各模式下的传输功率、回流功率及零电压开通(ZVS)特性,采用Karush Kuhn Tucker(KKT)条件法结合零电压开通特性求解实现回流功率最小化的最优移相比组合,由此提出最小回流功率优化方案及相应的控制策略。基于所提控制策略搭建实验样机,分析该方案的动态特性并对其与单移相控制、传统双重移相优化控制下的稳态特性包括回流功率、效率分析。所提优化控制的可行性和有效性在实验结果中得到了验证。

Abstract

A minimum backflow power optimization scheme to improve the efficiency based on dual phase shift control of dual active bridge DC-DC converter is proposed. Analyze and deduce the transmission power, backflow power, and zero voltage switching characteristics under each mode. By using the Karush Kuhn Tucker(KKT) condition method combined with zero voltage switching characteristics, the optimal shift ratio combination for minimizing backflow power is solved, and a minimum backflow power optimization scheme and control strategy are proposed. An experimental prototype is built based on the proposed control strategy. The dynamic characteristics of the scheme are analyzed, and the steady-state characteristics of the scheme are compared with single phase shift control and traditional dual phase shift optimization control, including backflow power and efficiency analysis. The feasibility and effectiveness of the proposed optimization control have been verified in the experimental results.

关键词

双有源桥DC-DC变换器 / 回流功率 / 双重移相控制 / KKT条件法 / 零电压开通

Key words

dual active bridge DC-DC converter / backflow power / dual phase-shifting control / KKT condition method / zero voltage switching

引用本文

导出引用
王盼, 朱继赜, 徐虎, 章国光, 袁雷, 徐岸非. 基于双重移相控制的双有源桥DC-DC变换器最小回流功率优化控制[J]. 太阳能学报. 2025, 46(5): 193-202 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0162
Wang Pan, Zhu Jize, Xu Hu, Zhang Guoguang, Yuan Lei, Xu Anfei. OPTIMIZATION CONTROL OF MINIMUM BACKFLOW POWER FOR UAL ACTIVE BRIDGE DC-DC CONVERTER BASED ON DUAL PHASE SHIFT CONTROL[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 193-202 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0162
中图分类号: TM246   

参考文献

[1] 宋强, 赵彪, 刘文华,等.智能直流配电网研究综述[J]. 中国电机工程学报, 2013, 33(25): 9-19, 5.
SONG Q, ZHAO B, LIU W H, et al.An overview of research on smart DC distribution power network[J]. Proceedings of the CSEE, 2013, 33(25): 9-19, 5.
[2] ZHAO B,SONG Q,LIU W H, et al.Overview of dual-active-bridge isolated bidirectional DC-DC converter forhigh-frequency-link power-conversion system[J]. IEEE transactions on power electronics, 2014, 29(8): 4091-4106.
[3] 钱一晨, 金晶. 可再生能源混合系统电源优化配置综述[J]. 太阳能学报, 2012,33(S1): 98-102.
QIAN Y C,JIN J.Summary of optimal allocation of renewable energy hybrid system power[J]. Acta energiae solaris sinica, 2012, 33(S1): 98-102.
[4] 刘朋, 贾燕冰, 韩肖清. 含双有源全桥变换器多电压等级直流配电网潮流分析与计算[J]. 电网技术, 2021, 45(2): 741-751.
LIU P, JIA Y B, HAN X Q.DAB-based power flow analysis and calculation for multi-voltage grades DC distribution network[J]. Power system technology, 2021, 70(2): 474-484.
[5] 涂春鸣, 管亮, 肖凡, 等. 双有源桥DC-DC变换器的模态分析方法[J]. 中国电机工程学报, 2019, 39(18): 5468-5479, 5595.
TU C U, GUAN L, XIAO F,et al.Modal analysis method for dual active bridge DC-DC converter[J]. Proceedings of the CSEE, 2019, 39(18): 5468-5479, 5595.
[6] 侯旭, 曾正, 冉立,等. 基于扩展移相控制的双向有源桥变换器回流功率优化[J]. 中国电机工程学报, 2018, 38(23): 7004-7014.
HOU X, ZENG Z, RAN L, et al.Backflow power optimization of dual active bridge converter based on extended-phase-shift control[J]. Proceedings of the CSEE, 2018, 38(23): 7004-7014.
[7] 郭华越, 张兴, 赵文广,等.扩展移相控制的双有源桥DC-DC变换器的优化控制策略[J]. 中国电机工程学报, 2019, 39(13): 3889-3899.
GUO H Y, ZHANG X, ZHAO W G, et al.Optimal control strategy of dual active bridge DC-DC converters with extended-phase-shift control[J] Proceedings of the CSEE, 2019, 39(13): 3889-3899.
[8] 李彦君, 张兴, 赵文广,等. 基于拓展移相调制的双有源桥回流功率优化策略[J]. 太阳能学报, 2022, 43(3): 216-222.
LI Y J, ZHANG X, ZHAO W G,et al.Optimized strategy of dual active bridge reflux power based on extended phase shift modulation[J]. Acta energiae solaris sinica, 2022, 43(3): 216-222.
[9] XU F, LIU J, DONG Z.Minimum backflow power and ZVS design for dual-active-bridge DC-DC converters[J]. IEEE transactions on industrial electronics, 2023, 70(1): 474-484.
[10] 王攀攀, 徐泽涵, 高利强,等. 新扩展移相角下的双有源桥DC-DC变换器优化控制策略[J]. 中国电机工程学报, 2023, 43(2): 727-738.
WANG P P, XU Z H, GAO L Q, et al.Optimal control strategy for dual-active-bridge DC-DC converter with new extended-phase-shift angle[J]. Proceedings of the CSEE, 2023, 43(2): 727-738.
[11] BAI H, MI C.Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control[J]. IEEE transactions on power electronics, 2008, 23(6): 2905-2914.
[12] 曾进辉, 孙志峰, 雷敏,等. 双重移相控制的双主动全桥变换器全局电流应力分析及优化控制策略[J]. 电工技术学报, 2019, 34(12): 2507-2518.
ZENG J H, SUN Z F, LEI M, et al.Global current stress analysis and optimal control strategy of dual-active full bridge converter based on dual phase shift control[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2507-2518
[13] 王仁龙, 杨庆新, 操孙鹏,等. 一种优化电流应力的双有源桥式DC-DC变换器双重移相调制策略[J]. 电工技术学报, 2021, 36(S1): 274-282.
WANG R L, YANG Q X, CAO S P, et al.An optimized dual phase shift modulation strategy for dual active bridge DC-DC converters[J]. Transactions of China Electrotechnical Society, 2021, (S1): 274-282.
[14] 李善寿, 王浩, 叶伟, 等. 抑制DAB变换器回流功率的双重移相调制策略[J]. 电力系统保护与控制, 2022, 50(17): 14-23.
LI S S, WANG H, YE W,et al.Dual phase shift modulation strategy for reactive power suppression of a DAB converter[J]. Power system protection and control, 2022, 50(17): 14-23.
[15] KIM M, ROSEKEIT M, SUL S, et al.A dual-phase-shift control strategy for dual-active-bridge DC-DC converter in wide voltage range[C]//ICPE. Jeju, Korea of Republic, 2011, 364-371.
[16] 张勋, 王广柱, 商秀娟,等. 双向全桥DC-DC变换器回流功率优化的双重移相控制[J]. 中国电机工程学报, 2016, 36(4): 1090-1097.
ZHANG X, WANG G Z,SHANG X J, et al.An optimized strategy based on backflow power of bi-directional dual-active-bridge DC-DC converters with dual-phase-shifting control[J]. Proceedings of the CSEE, 2016, 36(4): 1090-1097.
[17] 王祺, 张泽轲, 刘彬, 等. 双重移相控制下双有源桥变换器最小回流功率全局优化控制[J].电网技术, 2024, 48(9): 3921-3930.
WANG Q, ZHANG Z K, LIU B, et al.Global optimization control of minimum backflow power for dual-active-bridge converters under dual-phase-shift control[J]. Power system technology, 2024, 48(9): 3921-3930.
[18] 孙标广, 李静争, 张迁迁,等. 基于ZVS的双向全桥DC-DC变换器最小回流功率双重移相分段控制[J]. 太阳能学报, 2023, 44(9): 39-48.
SUN B G, LI J Z, ZHANG Q Q, et al.Dual phase-shift segment control of minimum return power of bidirectional full-bridge DC-DC converter based on ZVS[J]. Acta energiae solaris sinica, 2023, 44(9): 39-48.
[19] 胡燕, 张天晖, 杨立新, 等. 双重移相DAB变换器回流功率优化与电流应力优化的对比研究[J]. 中国电机工程学报, 2020, 40(增刊1): 243-253.
HU Y, ZHANG T H, YANG L X, et al.Comparative study on reactive power optimization and current stress optimization of DAB converter with dual phase shift control[J]. Proceedings of the CSEE, 2020, 40(S1): 243-253
[20] 童安平, 杭丽君, 李国杰. 三重移相控制下DAB变换器全局优化控制策略及分析[J]. 中国电机工程学报, 2017, 37(20): 6037-6049.
TONG A P,HANG L J,LI G J.Global optimized control strategy of dual active bridge converter controlled by triple-phase-shift modulation scheme and its analysis[J]. Proceedings of the CSEE, 37(20): 6037-6049.
[21] 王攀攀, 徐泽涵, 王莉,等. 基于三重移相的双有源桥DC-DC变换器效率与动态性能混合优化控制策略[J]. 电工技术学报, 2022, 37(18): 4720-4731.
WANG P P, XU Z H, WANG L, et al.A hybrid optimization control strategy of efficiency and dynamic performance of dual-active-bridge DC-DC converter based on triple-phase-shift[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4720-4731.
[22] JUN H, YUE W, LI Z Q, et al.Unified triple-phase-shift control to minimize current stress and achieve full soft-switching of isolated bidirectional DC-DC converter[J]. IEEE transactions on industrial electronics, 2016, 63(7): 4169-4179.

基金

湖北省教育厅科学技术研究项目(Q20211405); 湖北工业大学博士科研启动基金(XJ2021003601)

PDF(6939 KB)

Accesses

Citation

Detail

段落导航
相关文章

/